Eddycrack864 commited on
Commit
1af1682
1 Parent(s): 97c4a51

Delete lib_v5

Browse files
Files changed (41) hide show
  1. lib_v5/mdxnet.py +0 -140
  2. lib_v5/mixer.ckpt +0 -3
  3. lib_v5/modules.py +0 -74
  4. lib_v5/pyrb.py +0 -92
  5. lib_v5/spec_utils.py +0 -692
  6. lib_v5/vr_network/__init__.py +0 -1
  7. lib_v5/vr_network/__pycache__/__init__.cpython-310.pyc +0 -0
  8. lib_v5/vr_network/__pycache__/layers.cpython-310.pyc +0 -0
  9. lib_v5/vr_network/__pycache__/layers_new.cpython-310.pyc +0 -0
  10. lib_v5/vr_network/__pycache__/model_param_init.cpython-310.pyc +0 -0
  11. lib_v5/vr_network/__pycache__/nets.cpython-310.pyc +0 -0
  12. lib_v5/vr_network/__pycache__/nets_new.cpython-310.pyc +0 -0
  13. lib_v5/vr_network/layers.py +0 -143
  14. lib_v5/vr_network/layers_new.py +0 -126
  15. lib_v5/vr_network/model_param_init.py +0 -59
  16. lib_v5/vr_network/modelparams/1band_sr16000_hl512.json +0 -19
  17. lib_v5/vr_network/modelparams/1band_sr32000_hl512.json +0 -19
  18. lib_v5/vr_network/modelparams/1band_sr33075_hl384.json +0 -19
  19. lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json +0 -19
  20. lib_v5/vr_network/modelparams/1band_sr44100_hl256.json +0 -19
  21. lib_v5/vr_network/modelparams/1band_sr44100_hl512.json +0 -19
  22. lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json +0 -19
  23. lib_v5/vr_network/modelparams/1band_sr44100_hl512_nf1024.json +0 -19
  24. lib_v5/vr_network/modelparams/2band_32000.json +0 -30
  25. lib_v5/vr_network/modelparams/2band_44100_lofi.json +0 -30
  26. lib_v5/vr_network/modelparams/2band_48000.json +0 -30
  27. lib_v5/vr_network/modelparams/3band_44100.json +0 -42
  28. lib_v5/vr_network/modelparams/3band_44100_mid.json +0 -43
  29. lib_v5/vr_network/modelparams/3band_44100_msb2.json +0 -43
  30. lib_v5/vr_network/modelparams/4band_44100.json +0 -54
  31. lib_v5/vr_network/modelparams/4band_44100_mid.json +0 -55
  32. lib_v5/vr_network/modelparams/4band_44100_msb.json +0 -55
  33. lib_v5/vr_network/modelparams/4band_44100_msb2.json +0 -55
  34. lib_v5/vr_network/modelparams/4band_44100_reverse.json +0 -55
  35. lib_v5/vr_network/modelparams/4band_44100_sw.json +0 -55
  36. lib_v5/vr_network/modelparams/4band_v2.json +0 -54
  37. lib_v5/vr_network/modelparams/4band_v2_sn.json +0 -55
  38. lib_v5/vr_network/modelparams/4band_v3.json +0 -54
  39. lib_v5/vr_network/modelparams/ensemble.json +0 -43
  40. lib_v5/vr_network/nets.py +0 -166
  41. lib_v5/vr_network/nets_new.py +0 -125
lib_v5/mdxnet.py DELETED
@@ -1,140 +0,0 @@
1
- from abc import ABCMeta
2
-
3
- import torch
4
- import torch.nn as nn
5
- from pytorch_lightning import LightningModule
6
- from .modules import TFC_TDF
7
-
8
- dim_s = 4
9
-
10
- class AbstractMDXNet(LightningModule):
11
- __metaclass__ = ABCMeta
12
-
13
- def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap):
14
- super().__init__()
15
- self.target_name = target_name
16
- self.lr = lr
17
- self.optimizer = optimizer
18
- self.dim_c = dim_c
19
- self.dim_f = dim_f
20
- self.dim_t = dim_t
21
- self.n_fft = n_fft
22
- self.n_bins = n_fft // 2 + 1
23
- self.hop_length = hop_length
24
- self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
25
- self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)
26
-
27
- def configure_optimizers(self):
28
- if self.optimizer == 'rmsprop':
29
- return torch.optim.RMSprop(self.parameters(), self.lr)
30
-
31
- if self.optimizer == 'adamw':
32
- return torch.optim.AdamW(self.parameters(), self.lr)
33
-
34
- class ConvTDFNet(AbstractMDXNet):
35
- def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length,
36
- num_blocks, l, g, k, bn, bias, overlap):
37
-
38
- super(ConvTDFNet, self).__init__(
39
- target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap)
40
- self.save_hyperparameters()
41
-
42
- self.num_blocks = num_blocks
43
- self.l = l
44
- self.g = g
45
- self.k = k
46
- self.bn = bn
47
- self.bias = bias
48
-
49
- if optimizer == 'rmsprop':
50
- norm = nn.BatchNorm2d
51
-
52
- if optimizer == 'adamw':
53
- norm = lambda input:nn.GroupNorm(2, input)
54
-
55
- self.n = num_blocks // 2
56
- scale = (2, 2)
57
-
58
- self.first_conv = nn.Sequential(
59
- nn.Conv2d(in_channels=self.dim_c, out_channels=g, kernel_size=(1, 1)),
60
- norm(g),
61
- nn.ReLU(),
62
- )
63
-
64
- f = self.dim_f
65
- c = g
66
- self.encoding_blocks = nn.ModuleList()
67
- self.ds = nn.ModuleList()
68
- for i in range(self.n):
69
- self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
70
- self.ds.append(
71
- nn.Sequential(
72
- nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
73
- norm(c + g),
74
- nn.ReLU()
75
- )
76
- )
77
- f = f // 2
78
- c += g
79
-
80
- self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)
81
-
82
- self.decoding_blocks = nn.ModuleList()
83
- self.us = nn.ModuleList()
84
- for i in range(self.n):
85
- self.us.append(
86
- nn.Sequential(
87
- nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
88
- norm(c - g),
89
- nn.ReLU()
90
- )
91
- )
92
- f = f * 2
93
- c -= g
94
-
95
- self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
96
-
97
- self.final_conv = nn.Sequential(
98
- nn.Conv2d(in_channels=c, out_channels=self.dim_c, kernel_size=(1, 1)),
99
- )
100
-
101
- def forward(self, x):
102
-
103
- x = self.first_conv(x)
104
-
105
- x = x.transpose(-1, -2)
106
-
107
- ds_outputs = []
108
- for i in range(self.n):
109
- x = self.encoding_blocks[i](x)
110
- ds_outputs.append(x)
111
- x = self.ds[i](x)
112
-
113
- x = self.bottleneck_block(x)
114
-
115
- for i in range(self.n):
116
- x = self.us[i](x)
117
- x *= ds_outputs[-i - 1]
118
- x = self.decoding_blocks[i](x)
119
-
120
- x = x.transpose(-1, -2)
121
-
122
- x = self.final_conv(x)
123
-
124
- return x
125
-
126
- class Mixer(nn.Module):
127
- def __init__(self, device, mixer_path):
128
-
129
- super(Mixer, self).__init__()
130
-
131
- self.linear = nn.Linear((dim_s+1)*2, dim_s*2, bias=False)
132
-
133
- self.load_state_dict(
134
- torch.load(mixer_path, map_location=device)
135
- )
136
-
137
- def forward(self, x):
138
- x = x.reshape(1,(dim_s+1)*2,-1).transpose(-1,-2)
139
- x = self.linear(x)
140
- return x.transpose(-1,-2).reshape(dim_s,2,-1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/mixer.ckpt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:946e03c789160ae4631f7037e54b5de90c32fe2c302fc2e5022696bde6902300
3
- size 129
 
 
 
 
lib_v5/modules.py DELETED
@@ -1,74 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
-
5
- class TFC(nn.Module):
6
- def __init__(self, c, l, k, norm):
7
- super(TFC, self).__init__()
8
-
9
- self.H = nn.ModuleList()
10
- for i in range(l):
11
- self.H.append(
12
- nn.Sequential(
13
- nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
14
- norm(c),
15
- nn.ReLU(),
16
- )
17
- )
18
-
19
- def forward(self, x):
20
- for h in self.H:
21
- x = h(x)
22
- return x
23
-
24
-
25
- class DenseTFC(nn.Module):
26
- def __init__(self, c, l, k, norm):
27
- super(DenseTFC, self).__init__()
28
-
29
- self.conv = nn.ModuleList()
30
- for i in range(l):
31
- self.conv.append(
32
- nn.Sequential(
33
- nn.Conv2d(in_channels=c, out_channels=c, kernel_size=k, stride=1, padding=k // 2),
34
- norm(c),
35
- nn.ReLU(),
36
- )
37
- )
38
-
39
- def forward(self, x):
40
- for layer in self.conv[:-1]:
41
- x = torch.cat([layer(x), x], 1)
42
- return self.conv[-1](x)
43
-
44
-
45
- class TFC_TDF(nn.Module):
46
- def __init__(self, c, l, f, k, bn, dense=False, bias=True, norm=nn.BatchNorm2d):
47
-
48
- super(TFC_TDF, self).__init__()
49
-
50
- self.use_tdf = bn is not None
51
-
52
- self.tfc = DenseTFC(c, l, k, norm) if dense else TFC(c, l, k, norm)
53
-
54
- if self.use_tdf:
55
- if bn == 0:
56
- self.tdf = nn.Sequential(
57
- nn.Linear(f, f, bias=bias),
58
- norm(c),
59
- nn.ReLU()
60
- )
61
- else:
62
- self.tdf = nn.Sequential(
63
- nn.Linear(f, f // bn, bias=bias),
64
- norm(c),
65
- nn.ReLU(),
66
- nn.Linear(f // bn, f, bias=bias),
67
- norm(c),
68
- nn.ReLU()
69
- )
70
-
71
- def forward(self, x):
72
- x = self.tfc(x)
73
- return x + self.tdf(x) if self.use_tdf else x
74
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/pyrb.py DELETED
@@ -1,92 +0,0 @@
1
- import os
2
- import subprocess
3
- import tempfile
4
- import six
5
- import numpy as np
6
- import soundfile as sf
7
- import sys
8
-
9
- if getattr(sys, 'frozen', False):
10
- BASE_PATH_RUB = sys._MEIPASS
11
- else:
12
- BASE_PATH_RUB = os.path.dirname(os.path.abspath(__file__))
13
-
14
- __all__ = ['time_stretch', 'pitch_shift']
15
-
16
- __RUBBERBAND_UTIL = os.path.join(BASE_PATH_RUB, 'rubberband')
17
-
18
- if six.PY2:
19
- DEVNULL = open(os.devnull, 'w')
20
- else:
21
- DEVNULL = subprocess.DEVNULL
22
-
23
- def __rubberband(y, sr, **kwargs):
24
-
25
- assert sr > 0
26
-
27
- # Get the input and output tempfile
28
- fd, infile = tempfile.mkstemp(suffix='.wav')
29
- os.close(fd)
30
- fd, outfile = tempfile.mkstemp(suffix='.wav')
31
- os.close(fd)
32
-
33
- # dump the audio
34
- sf.write(infile, y, sr)
35
-
36
- try:
37
- # Execute rubberband
38
- arguments = [__RUBBERBAND_UTIL, '-q']
39
-
40
- for key, value in six.iteritems(kwargs):
41
- arguments.append(str(key))
42
- arguments.append(str(value))
43
-
44
- arguments.extend([infile, outfile])
45
-
46
- subprocess.check_call(arguments, stdout=DEVNULL, stderr=DEVNULL)
47
-
48
- # Load the processed audio.
49
- y_out, _ = sf.read(outfile, always_2d=True)
50
-
51
- # make sure that output dimensions matches input
52
- if y.ndim == 1:
53
- y_out = np.squeeze(y_out)
54
-
55
- except OSError as exc:
56
- six.raise_from(RuntimeError('Failed to execute rubberband. '
57
- 'Please verify that rubberband-cli '
58
- 'is installed.'),
59
- exc)
60
-
61
- finally:
62
- # Remove temp files
63
- os.unlink(infile)
64
- os.unlink(outfile)
65
-
66
- return y_out
67
-
68
- def time_stretch(y, sr, rate, rbargs=None):
69
- if rate <= 0:
70
- raise ValueError('rate must be strictly positive')
71
-
72
- if rate == 1.0:
73
- return y
74
-
75
- if rbargs is None:
76
- rbargs = dict()
77
-
78
- rbargs.setdefault('--tempo', rate)
79
-
80
- return __rubberband(y, sr, **rbargs)
81
-
82
- def pitch_shift(y, sr, n_steps, rbargs=None):
83
-
84
- if n_steps == 0:
85
- return y
86
-
87
- if rbargs is None:
88
- rbargs = dict()
89
-
90
- rbargs.setdefault('--pitch', n_steps)
91
-
92
- return __rubberband(y, sr, **rbargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/spec_utils.py DELETED
@@ -1,692 +0,0 @@
1
- import librosa
2
- import numpy as np
3
- import soundfile as sf
4
- import math
5
- import random
6
- import math
7
- import platform
8
- import traceback
9
- from . import pyrb
10
- #cur
11
- OPERATING_SYSTEM = platform.system()
12
- SYSTEM_ARCH = platform.platform()
13
- SYSTEM_PROC = platform.processor()
14
- ARM = 'arm'
15
-
16
- if OPERATING_SYSTEM == 'Windows':
17
- from pyrubberband import pyrb
18
- else:
19
- from . import pyrb
20
-
21
- if OPERATING_SYSTEM == 'Darwin':
22
- wav_resolution = "polyphase" if SYSTEM_PROC == ARM or ARM in SYSTEM_ARCH else "sinc_fastest"
23
- else:
24
- wav_resolution = "sinc_fastest"
25
-
26
- MAX_SPEC = 'Max Spec'
27
- MIN_SPEC = 'Min Spec'
28
- AVERAGE = 'Average'
29
-
30
- def crop_center(h1, h2):
31
- h1_shape = h1.size()
32
- h2_shape = h2.size()
33
-
34
- if h1_shape[3] == h2_shape[3]:
35
- return h1
36
- elif h1_shape[3] < h2_shape[3]:
37
- raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
38
-
39
- s_time = (h1_shape[3] - h2_shape[3]) // 2
40
- e_time = s_time + h2_shape[3]
41
- h1 = h1[:, :, :, s_time:e_time]
42
-
43
- return h1
44
-
45
- def preprocess(X_spec):
46
- X_mag = np.abs(X_spec)
47
- X_phase = np.angle(X_spec)
48
-
49
- return X_mag, X_phase
50
-
51
- def make_padding(width, cropsize, offset):
52
- left = offset
53
- roi_size = cropsize - offset * 2
54
- if roi_size == 0:
55
- roi_size = cropsize
56
- right = roi_size - (width % roi_size) + left
57
-
58
- return left, right, roi_size
59
-
60
- def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
61
- if reverse:
62
- wave_left = np.flip(np.asfortranarray(wave[0]))
63
- wave_right = np.flip(np.asfortranarray(wave[1]))
64
- elif mid_side:
65
- wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
66
- wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
67
- elif mid_side_b2:
68
- wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
69
- wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
70
- else:
71
- wave_left = np.asfortranarray(wave[0])
72
- wave_right = np.asfortranarray(wave[1])
73
-
74
- spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
75
- spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
76
-
77
- spec = np.asfortranarray([spec_left, spec_right])
78
-
79
- return spec
80
-
81
- def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
82
- import threading
83
-
84
- if reverse:
85
- wave_left = np.flip(np.asfortranarray(wave[0]))
86
- wave_right = np.flip(np.asfortranarray(wave[1]))
87
- elif mid_side:
88
- wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
89
- wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
90
- elif mid_side_b2:
91
- wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
92
- wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
93
- else:
94
- wave_left = np.asfortranarray(wave[0])
95
- wave_right = np.asfortranarray(wave[1])
96
-
97
- def run_thread(**kwargs):
98
- global spec_left
99
- spec_left = librosa.stft(**kwargs)
100
-
101
- thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
102
- thread.start()
103
- spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
104
- thread.join()
105
-
106
- spec = np.asfortranarray([spec_left, spec_right])
107
-
108
- return spec
109
-
110
- def normalize(wave, is_normalize=False):
111
- """Save output music files"""
112
- maxv = np.abs(wave).max()
113
- if maxv > 1.0:
114
- print(f"\nNormalization Set {is_normalize}: Input above threshold for clipping. Max:{maxv}")
115
- if is_normalize:
116
- print(f"The result was normalized.")
117
- wave /= maxv
118
- else:
119
- print(f"The result was not normalized.")
120
- else:
121
- print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}")
122
-
123
- return wave
124
-
125
- def normalize_two_stem(wave, mix, is_normalize=False):
126
- """Save output music files"""
127
-
128
- maxv = np.abs(wave).max()
129
- max_mix = np.abs(mix).max()
130
-
131
- if maxv > 1.0:
132
- print(f"\nNormalization Set {is_normalize}: Primary source above threshold for clipping. Max:{maxv}")
133
- print(f"\nNormalization Set {is_normalize}: Mixture above threshold for clipping. Max:{max_mix}")
134
- if is_normalize:
135
- print(f"The result was normalized.")
136
- wave /= maxv
137
- mix /= maxv
138
- else:
139
- print(f"The result was not normalized.")
140
- else:
141
- print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}")
142
-
143
-
144
- print(f"\nNormalization Set {is_normalize}: Primary source - Max:{np.abs(wave).max()}")
145
- print(f"\nNormalization Set {is_normalize}: Mixture - Max:{np.abs(mix).max()}")
146
-
147
- return wave, mix
148
-
149
- def combine_spectrograms(specs, mp):
150
- l = min([specs[i].shape[2] for i in specs])
151
- spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
152
- offset = 0
153
- bands_n = len(mp.param['band'])
154
-
155
- for d in range(1, bands_n + 1):
156
- h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
157
- spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
158
- offset += h
159
-
160
- if offset > mp.param['bins']:
161
- raise ValueError('Too much bins')
162
-
163
- # lowpass fiter
164
- if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
165
- if bands_n == 1:
166
- spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
167
- else:
168
- gp = 1
169
- for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
170
- g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
171
- gp = g
172
- spec_c[:, b, :] *= g
173
-
174
- return np.asfortranarray(spec_c)
175
-
176
- def spectrogram_to_image(spec, mode='magnitude'):
177
- if mode == 'magnitude':
178
- if np.iscomplexobj(spec):
179
- y = np.abs(spec)
180
- else:
181
- y = spec
182
- y = np.log10(y ** 2 + 1e-8)
183
- elif mode == 'phase':
184
- if np.iscomplexobj(spec):
185
- y = np.angle(spec)
186
- else:
187
- y = spec
188
-
189
- y -= y.min()
190
- y *= 255 / y.max()
191
- img = np.uint8(y)
192
-
193
- if y.ndim == 3:
194
- img = img.transpose(1, 2, 0)
195
- img = np.concatenate([
196
- np.max(img, axis=2, keepdims=True), img
197
- ], axis=2)
198
-
199
- return img
200
-
201
- def reduce_vocal_aggressively(X, y, softmask):
202
- v = X - y
203
- y_mag_tmp = np.abs(y)
204
- v_mag_tmp = np.abs(v)
205
-
206
- v_mask = v_mag_tmp > y_mag_tmp
207
- y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
208
-
209
- return y_mag * np.exp(1.j * np.angle(y))
210
-
211
- def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
212
- mask = y_mask
213
-
214
- try:
215
- if min_range < fade_size * 2:
216
- raise ValueError('min_range must be >= fade_size * 2')
217
-
218
- idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
219
- start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
220
- end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
221
- artifact_idx = np.where(end_idx - start_idx > min_range)[0]
222
- weight = np.zeros_like(y_mask)
223
- if len(artifact_idx) > 0:
224
- start_idx = start_idx[artifact_idx]
225
- end_idx = end_idx[artifact_idx]
226
- old_e = None
227
- for s, e in zip(start_idx, end_idx):
228
- if old_e is not None and s - old_e < fade_size:
229
- s = old_e - fade_size * 2
230
-
231
- if s != 0:
232
- weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
233
- else:
234
- s -= fade_size
235
-
236
- if e != y_mask.shape[2]:
237
- weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
238
- else:
239
- e += fade_size
240
-
241
- weight[:, :, s + fade_size:e - fade_size] = 1
242
- old_e = e
243
-
244
- v_mask = 1 - y_mask
245
- y_mask += weight * v_mask
246
-
247
- mask = y_mask
248
- except Exception as e:
249
- error_name = f'{type(e).__name__}'
250
- traceback_text = ''.join(traceback.format_tb(e.__traceback__))
251
- message = f'{error_name}: "{e}"\n{traceback_text}"'
252
- print('Post Process Failed: ', message)
253
-
254
-
255
- return mask
256
-
257
- def align_wave_head_and_tail(a, b):
258
- l = min([a[0].size, b[0].size])
259
-
260
- return a[:l,:l], b[:l,:l]
261
-
262
- def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse, clamp=False):
263
- spec_left = np.asfortranarray(spec[0])
264
- spec_right = np.asfortranarray(spec[1])
265
-
266
- wave_left = librosa.istft(spec_left, hop_length=hop_length)
267
- wave_right = librosa.istft(spec_right, hop_length=hop_length)
268
-
269
- if reverse:
270
- return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
271
- elif mid_side:
272
- return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
273
- elif mid_side_b2:
274
- return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
275
- else:
276
- return np.asfortranarray([wave_left, wave_right])
277
-
278
- def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
279
- import threading
280
-
281
- spec_left = np.asfortranarray(spec[0])
282
- spec_right = np.asfortranarray(spec[1])
283
-
284
- def run_thread(**kwargs):
285
- global wave_left
286
- wave_left = librosa.istft(**kwargs)
287
-
288
- thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
289
- thread.start()
290
- wave_right = librosa.istft(spec_right, hop_length=hop_length)
291
- thread.join()
292
-
293
- if reverse:
294
- return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
295
- elif mid_side:
296
- return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
297
- elif mid_side_b2:
298
- return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
299
- else:
300
- return np.asfortranarray([wave_left, wave_right])
301
-
302
- def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
303
- bands_n = len(mp.param['band'])
304
- offset = 0
305
-
306
- for d in range(1, bands_n + 1):
307
- bp = mp.param['band'][d]
308
- spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
309
- h = bp['crop_stop'] - bp['crop_start']
310
- spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
311
-
312
- offset += h
313
- if d == bands_n: # higher
314
- if extra_bins_h: # if --high_end_process bypass
315
- max_bin = bp['n_fft'] // 2
316
- spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
317
- if bp['hpf_start'] > 0:
318
- spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
319
- if bands_n == 1:
320
- wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
321
- else:
322
- wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
323
- else:
324
- sr = mp.param['band'][d+1]['sr']
325
- if d == 1: # lower
326
- spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
327
- wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type=wav_resolution)
328
- else: # mid
329
- spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
330
- spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
331
- wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
332
- wave = librosa.resample(wave2, bp['sr'], sr, res_type=wav_resolution)
333
-
334
- return wave
335
-
336
- def fft_lp_filter(spec, bin_start, bin_stop):
337
- g = 1.0
338
- for b in range(bin_start, bin_stop):
339
- g -= 1 / (bin_stop - bin_start)
340
- spec[:, b, :] = g * spec[:, b, :]
341
-
342
- spec[:, bin_stop:, :] *= 0
343
-
344
- return spec
345
-
346
- def fft_hp_filter(spec, bin_start, bin_stop):
347
- g = 1.0
348
- for b in range(bin_start, bin_stop, -1):
349
- g -= 1 / (bin_start - bin_stop)
350
- spec[:, b, :] = g * spec[:, b, :]
351
-
352
- spec[:, 0:bin_stop+1, :] *= 0
353
-
354
- return spec
355
-
356
- def mirroring(a, spec_m, input_high_end, mp):
357
- if 'mirroring' == a:
358
- mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
359
- mirror = mirror * np.exp(1.j * np.angle(input_high_end))
360
-
361
- return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
362
-
363
- if 'mirroring2' == a:
364
- mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
365
- mi = np.multiply(mirror, input_high_end * 1.7)
366
-
367
- return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
368
-
369
- def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
370
- aggr = aggressiveness['value']
371
-
372
- if aggr != 0:
373
- if is_non_accom_stem:
374
- aggr = 1 - aggr
375
-
376
- aggr = [aggr, aggr]
377
-
378
- if aggressiveness['aggr_correction'] is not None:
379
- aggr[0] += aggressiveness['aggr_correction']['left']
380
- aggr[1] += aggressiveness['aggr_correction']['right']
381
-
382
- for ch in range(2):
383
- mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
384
- mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])
385
-
386
- # if is_non_accom_stem:
387
- # mask = (1.0 - mask)
388
-
389
- return mask
390
-
391
- def stft(wave, nfft, hl):
392
- wave_left = np.asfortranarray(wave[0])
393
- wave_right = np.asfortranarray(wave[1])
394
- spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
395
- spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
396
- spec = np.asfortranarray([spec_left, spec_right])
397
-
398
- return spec
399
-
400
- def istft(spec, hl):
401
- spec_left = np.asfortranarray(spec[0])
402
- spec_right = np.asfortranarray(spec[1])
403
- wave_left = librosa.istft(spec_left, hop_length=hl)
404
- wave_right = librosa.istft(spec_right, hop_length=hl)
405
- wave = np.asfortranarray([wave_left, wave_right])
406
-
407
- return wave
408
-
409
- def spec_effects(wave, algorithm='Default', value=None):
410
- spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
411
- if algorithm == 'Min_Mag':
412
- v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
413
- wave = istft(v_spec_m,1024)
414
- elif algorithm == 'Max_Mag':
415
- v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
416
- wave = istft(v_spec_m,1024)
417
- elif algorithm == 'Default':
418
- wave = (wave[1] * value) + (wave[0] * (1-value))
419
- elif algorithm == 'Invert_p':
420
- X_mag = np.abs(spec[0])
421
- y_mag = np.abs(spec[1])
422
- max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
423
- v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
424
- wave = istft(v_spec,1024)
425
-
426
- return wave
427
-
428
- def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
429
- wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
430
-
431
- if wave.ndim == 1:
432
- wave = np.asfortranarray([wave,wave])
433
-
434
- return wave
435
-
436
- def wave_to_spectrogram_no_mp(wave):
437
-
438
- spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
439
-
440
- if spec.ndim == 1:
441
- spec = np.asfortranarray([spec,spec])
442
-
443
- return spec
444
-
445
- def invert_audio(specs, invert_p=True):
446
-
447
- ln = min([specs[0].shape[2], specs[1].shape[2]])
448
- specs[0] = specs[0][:,:,:ln]
449
- specs[1] = specs[1][:,:,:ln]
450
-
451
- if invert_p:
452
- X_mag = np.abs(specs[0])
453
- y_mag = np.abs(specs[1])
454
- max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
455
- v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
456
- else:
457
- specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
458
- v_spec = specs[0] - specs[1]
459
-
460
- return v_spec
461
-
462
- def invert_stem(mixture, stem):
463
-
464
- mixture = wave_to_spectrogram_no_mp(mixture)
465
- stem = wave_to_spectrogram_no_mp(stem)
466
- output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
467
-
468
- return -output.T
469
-
470
- def ensembling(a, specs):
471
- for i in range(1, len(specs)):
472
- if i == 1:
473
- spec = specs[0]
474
-
475
- ln = min([spec.shape[2], specs[i].shape[2]])
476
- spec = spec[:,:,:ln]
477
- specs[i] = specs[i][:,:,:ln]
478
-
479
- if MIN_SPEC == a:
480
- spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
481
- if MAX_SPEC == a:
482
- spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
483
- if AVERAGE == a:
484
- spec = np.where(np.abs(specs[i]) == np.abs(spec), specs[i], spec)
485
-
486
- return spec
487
-
488
- def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path):
489
-
490
- wavs_ = []
491
-
492
- if algorithm == AVERAGE:
493
- output = average_audio(audio_input)
494
- samplerate = 44100
495
- else:
496
- specs = []
497
-
498
- for i in range(len(audio_input)):
499
- wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
500
- wavs_.append(wave)
501
- spec = wave_to_spectrogram_no_mp(wave)
502
- specs.append(spec)
503
-
504
- wave_shapes = [w.shape[1] for w in wavs_]
505
- target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
506
-
507
- output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
508
- output = to_shape(output, target_shape.shape)
509
-
510
- sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
511
-
512
- def to_shape(x, target_shape):
513
- padding_list = []
514
- for x_dim, target_dim in zip(x.shape, target_shape):
515
- pad_value = (target_dim - x_dim)
516
- pad_tuple = ((0, pad_value))
517
- padding_list.append(pad_tuple)
518
-
519
- return np.pad(x, tuple(padding_list), mode='constant')
520
-
521
- def to_shape_minimize(x: np.ndarray, target_shape):
522
-
523
- padding_list = []
524
- for x_dim, target_dim in zip(x.shape, target_shape):
525
- pad_value = (target_dim - x_dim)
526
- pad_tuple = ((0, pad_value))
527
- padding_list.append(pad_tuple)
528
-
529
- return np.pad(x, tuple(padding_list), mode='constant')
530
-
531
- def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False):
532
-
533
- wav, sr = librosa.load(audio_file, sr=44100, mono=False)
534
-
535
- if wav.ndim == 1:
536
- wav = np.asfortranarray([wav,wav])
537
-
538
- if is_pitch:
539
- wav_1 = pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
540
- wav_2 = pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
541
- else:
542
- wav_1 = pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
543
- wav_2 = pyrb.time_stretch(wav[1], sr, rate, rbargs=None)
544
-
545
- if wav_1.shape > wav_2.shape:
546
- wav_2 = to_shape(wav_2, wav_1.shape)
547
- if wav_1.shape < wav_2.shape:
548
- wav_1 = to_shape(wav_1, wav_2.shape)
549
-
550
- wav_mix = np.asfortranarray([wav_1, wav_2])
551
-
552
- sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
553
- save_format(export_path)
554
-
555
- def average_audio(audio):
556
-
557
- waves = []
558
- wave_shapes = []
559
- final_waves = []
560
-
561
- for i in range(len(audio)):
562
- wave = librosa.load(audio[i], sr=44100, mono=False)
563
- waves.append(wave[0])
564
- wave_shapes.append(wave[0].shape[1])
565
-
566
- wave_shapes_index = wave_shapes.index(max(wave_shapes))
567
- target_shape = waves[wave_shapes_index]
568
- waves.pop(wave_shapes_index)
569
- final_waves.append(target_shape)
570
-
571
- for n_array in waves:
572
- wav_target = to_shape(n_array, target_shape.shape)
573
- final_waves.append(wav_target)
574
-
575
- waves = sum(final_waves)
576
- waves = waves/len(audio)
577
-
578
- return waves
579
-
580
- def average_dual_sources(wav_1, wav_2, value):
581
-
582
- if wav_1.shape > wav_2.shape:
583
- wav_2 = to_shape(wav_2, wav_1.shape)
584
- if wav_1.shape < wav_2.shape:
585
- wav_1 = to_shape(wav_1, wav_2.shape)
586
-
587
- wave = (wav_1 * value) + (wav_2 * (1-value))
588
-
589
- return wave
590
-
591
- def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
592
-
593
- if wav_1.shape > wav_2.shape:
594
- wav_2 = to_shape(wav_2, wav_1.shape)
595
- if wav_1.shape < wav_2.shape:
596
- ln = min([wav_1.shape[1], wav_2.shape[1]])
597
- wav_2 = wav_2[:,:ln]
598
-
599
- ln = min([wav_1.shape[1], wav_2.shape[1]])
600
- wav_1 = wav_1[:,:ln]
601
- wav_2 = wav_2[:,:ln]
602
-
603
- return wav_2
604
-
605
- def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_normalization, command_Text, progress_bar_main_var, save_format):
606
- def get_diff(a, b):
607
- corr = np.correlate(a, b, "full")
608
- diff = corr.argmax() - (b.shape[0] - 1)
609
- return diff
610
-
611
- progress_bar_main_var.set(10)
612
-
613
- # read tracks
614
- wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
615
- wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
616
- wav1 = wav1.transpose()
617
- wav2 = wav2.transpose()
618
-
619
- command_Text(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
620
-
621
- wav2_org = wav2.copy()
622
- progress_bar_main_var.set(20)
623
-
624
- command_Text("Processing files... \n")
625
-
626
- # pick random position and get diff
627
-
628
- counts = {} # counting up for each diff value
629
- progress = 20
630
-
631
- check_range = 64
632
-
633
- base = (64 / check_range)
634
-
635
- for i in range(check_range):
636
- index = int(random.uniform(44100 * 2, min(wav1.shape[0], wav2.shape[0]) - 44100 * 2))
637
- shift = int(random.uniform(-22050,+22050))
638
- samp1 = wav1[index :index +44100, 0] # currently use left channel
639
- samp2 = wav2[index+shift:index+shift+44100, 0]
640
- progress += 1 * base
641
- progress_bar_main_var.set(progress)
642
- diff = get_diff(samp1, samp2)
643
- diff -= shift
644
-
645
- if abs(diff) < 22050:
646
- if not diff in counts:
647
- counts[diff] = 0
648
- counts[diff] += 1
649
-
650
- # use max counted diff value
651
- max_count = 0
652
- est_diff = 0
653
- for diff in counts.keys():
654
- if counts[diff] > max_count:
655
- max_count = counts[diff]
656
- est_diff = diff
657
-
658
- command_Text(f"Estimated difference is {est_diff} (count: {max_count})\n")
659
-
660
- progress_bar_main_var.set(90)
661
-
662
- audio_files = []
663
-
664
- def save_aligned_audio(wav2_aligned):
665
- command_Text(f"Aligned File 2 with File 1.\n")
666
- command_Text(f"Saving files... ")
667
- sf.write(file2_aligned, normalize(wav2_aligned, is_normalization), sr2, subtype=wav_type_set)
668
- save_format(file2_aligned)
669
- min_len = min(wav1.shape[0], wav2_aligned.shape[0])
670
- wav_sub = wav1[:min_len] - wav2_aligned[:min_len]
671
- audio_files.append(file2_aligned)
672
- return min_len, wav_sub
673
-
674
- # make aligned track 2
675
- if est_diff > 0:
676
- wav2_aligned = np.append(np.zeros((est_diff, 2)), wav2_org, axis=0)
677
- min_len, wav_sub = save_aligned_audio(wav2_aligned)
678
- elif est_diff < 0:
679
- wav2_aligned = wav2_org[-est_diff:]
680
- min_len, wav_sub = save_aligned_audio(wav2_aligned)
681
- else:
682
- command_Text(f"Audio files already aligned.\n")
683
- command_Text(f"Saving inverted track... ")
684
- min_len = min(wav1.shape[0], wav2.shape[0])
685
- wav_sub = wav1[:min_len] - wav2[:min_len]
686
-
687
- wav_sub = np.clip(wav_sub, -1, +1)
688
-
689
- sf.write(file_subtracted, normalize(wav_sub, is_normalization), sr1, subtype=wav_type_set)
690
- save_format(file_subtracted)
691
-
692
- progress_bar_main_var.set(95)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/__init__.py DELETED
@@ -1 +0,0 @@
1
- # VR init.
 
 
lib_v5/vr_network/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (152 Bytes)
 
lib_v5/vr_network/__pycache__/layers.cpython-310.pyc DELETED
Binary file (4.47 kB)
 
lib_v5/vr_network/__pycache__/layers_new.cpython-310.pyc DELETED
Binary file (4.44 kB)
 
lib_v5/vr_network/__pycache__/model_param_init.cpython-310.pyc DELETED
Binary file (1.62 kB)
 
lib_v5/vr_network/__pycache__/nets.cpython-310.pyc DELETED
Binary file (4.39 kB)
 
lib_v5/vr_network/__pycache__/nets_new.cpython-310.pyc DELETED
Binary file (4 kB)
 
lib_v5/vr_network/layers.py DELETED
@@ -1,143 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
-
5
- from lib_v5 import spec_utils
6
-
7
- class Conv2DBNActiv(nn.Module):
8
-
9
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
- super(Conv2DBNActiv, self).__init__()
11
- self.conv = nn.Sequential(
12
- nn.Conv2d(
13
- nin, nout,
14
- kernel_size=ksize,
15
- stride=stride,
16
- padding=pad,
17
- dilation=dilation,
18
- bias=False),
19
- nn.BatchNorm2d(nout),
20
- activ()
21
- )
22
-
23
- def __call__(self, x):
24
- return self.conv(x)
25
-
26
- class SeperableConv2DBNActiv(nn.Module):
27
-
28
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
29
- super(SeperableConv2DBNActiv, self).__init__()
30
- self.conv = nn.Sequential(
31
- nn.Conv2d(
32
- nin, nin,
33
- kernel_size=ksize,
34
- stride=stride,
35
- padding=pad,
36
- dilation=dilation,
37
- groups=nin,
38
- bias=False),
39
- nn.Conv2d(
40
- nin, nout,
41
- kernel_size=1,
42
- bias=False),
43
- nn.BatchNorm2d(nout),
44
- activ()
45
- )
46
-
47
- def __call__(self, x):
48
- return self.conv(x)
49
-
50
-
51
- class Encoder(nn.Module):
52
-
53
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
54
- super(Encoder, self).__init__()
55
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
56
- self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
57
-
58
- def __call__(self, x):
59
- skip = self.conv1(x)
60
- h = self.conv2(skip)
61
-
62
- return h, skip
63
-
64
-
65
- class Decoder(nn.Module):
66
-
67
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
68
- super(Decoder, self).__init__()
69
- self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
70
- self.dropout = nn.Dropout2d(0.1) if dropout else None
71
-
72
- def __call__(self, x, skip=None):
73
- x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
74
- if skip is not None:
75
- skip = spec_utils.crop_center(skip, x)
76
- x = torch.cat([x, skip], dim=1)
77
- h = self.conv(x)
78
-
79
- if self.dropout is not None:
80
- h = self.dropout(h)
81
-
82
- return h
83
-
84
-
85
- class ASPPModule(nn.Module):
86
-
87
- def __init__(self, nn_architecture, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
88
- super(ASPPModule, self).__init__()
89
- self.conv1 = nn.Sequential(
90
- nn.AdaptiveAvgPool2d((1, None)),
91
- Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
92
- )
93
-
94
- self.nn_architecture = nn_architecture
95
- self.six_layer = [129605]
96
- self.seven_layer = [537238, 537227, 33966]
97
-
98
- extra_conv = SeperableConv2DBNActiv(
99
- nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
100
-
101
- self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
102
- self.conv3 = SeperableConv2DBNActiv(
103
- nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
104
- self.conv4 = SeperableConv2DBNActiv(
105
- nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
106
- self.conv5 = SeperableConv2DBNActiv(
107
- nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
108
-
109
- if self.nn_architecture in self.six_layer:
110
- self.conv6 = extra_conv
111
- nin_x = 6
112
- elif self.nn_architecture in self.seven_layer:
113
- self.conv6 = extra_conv
114
- self.conv7 = extra_conv
115
- nin_x = 7
116
- else:
117
- nin_x = 5
118
-
119
- self.bottleneck = nn.Sequential(
120
- Conv2DBNActiv(nin * nin_x, nout, 1, 1, 0, activ=activ),
121
- nn.Dropout2d(0.1)
122
- )
123
-
124
- def forward(self, x):
125
- _, _, h, w = x.size()
126
- feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
127
- feat2 = self.conv2(x)
128
- feat3 = self.conv3(x)
129
- feat4 = self.conv4(x)
130
- feat5 = self.conv5(x)
131
-
132
- if self.nn_architecture in self.six_layer:
133
- feat6 = self.conv6(x)
134
- out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1)
135
- elif self.nn_architecture in self.seven_layer:
136
- feat6 = self.conv6(x)
137
- feat7 = self.conv7(x)
138
- out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
139
- else:
140
- out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
141
-
142
- bottle = self.bottleneck(out)
143
- return bottle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/layers_new.py DELETED
@@ -1,126 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
-
5
- from lib_v5 import spec_utils
6
-
7
- class Conv2DBNActiv(nn.Module):
8
-
9
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
10
- super(Conv2DBNActiv, self).__init__()
11
- self.conv = nn.Sequential(
12
- nn.Conv2d(
13
- nin, nout,
14
- kernel_size=ksize,
15
- stride=stride,
16
- padding=pad,
17
- dilation=dilation,
18
- bias=False),
19
- nn.BatchNorm2d(nout),
20
- activ()
21
- )
22
-
23
- def __call__(self, x):
24
- return self.conv(x)
25
-
26
- class Encoder(nn.Module):
27
-
28
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
29
- super(Encoder, self).__init__()
30
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
31
- self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
32
-
33
- def __call__(self, x):
34
- h = self.conv1(x)
35
- h = self.conv2(h)
36
-
37
- return h
38
-
39
-
40
- class Decoder(nn.Module):
41
-
42
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
43
- super(Decoder, self).__init__()
44
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
45
- # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
46
- self.dropout = nn.Dropout2d(0.1) if dropout else None
47
-
48
- def __call__(self, x, skip=None):
49
- x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
50
-
51
- if skip is not None:
52
- skip = spec_utils.crop_center(skip, x)
53
- x = torch.cat([x, skip], dim=1)
54
-
55
- h = self.conv1(x)
56
- # h = self.conv2(h)
57
-
58
- if self.dropout is not None:
59
- h = self.dropout(h)
60
-
61
- return h
62
-
63
-
64
- class ASPPModule(nn.Module):
65
-
66
- def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
67
- super(ASPPModule, self).__init__()
68
- self.conv1 = nn.Sequential(
69
- nn.AdaptiveAvgPool2d((1, None)),
70
- Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
71
- )
72
- self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
73
- self.conv3 = Conv2DBNActiv(
74
- nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
75
- )
76
- self.conv4 = Conv2DBNActiv(
77
- nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
78
- )
79
- self.conv5 = Conv2DBNActiv(
80
- nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
81
- )
82
- self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
83
- self.dropout = nn.Dropout2d(0.1) if dropout else None
84
-
85
- def forward(self, x):
86
- _, _, h, w = x.size()
87
- feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
88
- feat2 = self.conv2(x)
89
- feat3 = self.conv3(x)
90
- feat4 = self.conv4(x)
91
- feat5 = self.conv5(x)
92
- out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
93
- out = self.bottleneck(out)
94
-
95
- if self.dropout is not None:
96
- out = self.dropout(out)
97
-
98
- return out
99
-
100
-
101
- class LSTMModule(nn.Module):
102
-
103
- def __init__(self, nin_conv, nin_lstm, nout_lstm):
104
- super(LSTMModule, self).__init__()
105
- self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
106
- self.lstm = nn.LSTM(
107
- input_size=nin_lstm,
108
- hidden_size=nout_lstm // 2,
109
- bidirectional=True
110
- )
111
- self.dense = nn.Sequential(
112
- nn.Linear(nout_lstm, nin_lstm),
113
- nn.BatchNorm1d(nin_lstm),
114
- nn.ReLU()
115
- )
116
-
117
- def forward(self, x):
118
- N, _, nbins, nframes = x.size()
119
- h = self.conv(x)[:, 0] # N, nbins, nframes
120
- h = h.permute(2, 0, 1) # nframes, N, nbins
121
- h, _ = self.lstm(h)
122
- h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
123
- h = h.reshape(nframes, N, 1, nbins)
124
- h = h.permute(1, 2, 3, 0)
125
-
126
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/model_param_init.py DELETED
@@ -1,59 +0,0 @@
1
- import json
2
- import pathlib
3
-
4
- default_param = {}
5
- default_param['bins'] = 768
6
- default_param['unstable_bins'] = 9 # training only
7
- default_param['reduction_bins'] = 762 # training only
8
- default_param['sr'] = 44100
9
- default_param['pre_filter_start'] = 757
10
- default_param['pre_filter_stop'] = 768
11
- default_param['band'] = {}
12
-
13
-
14
- default_param['band'][1] = {
15
- 'sr': 11025,
16
- 'hl': 128,
17
- 'n_fft': 960,
18
- 'crop_start': 0,
19
- 'crop_stop': 245,
20
- 'lpf_start': 61, # inference only
21
- 'res_type': 'polyphase'
22
- }
23
-
24
- default_param['band'][2] = {
25
- 'sr': 44100,
26
- 'hl': 512,
27
- 'n_fft': 1536,
28
- 'crop_start': 24,
29
- 'crop_stop': 547,
30
- 'hpf_start': 81, # inference only
31
- 'res_type': 'sinc_best'
32
- }
33
-
34
-
35
- def int_keys(d):
36
- r = {}
37
- for k, v in d:
38
- if k.isdigit():
39
- k = int(k)
40
- r[k] = v
41
- return r
42
-
43
-
44
- class ModelParameters(object):
45
- def __init__(self, config_path=''):
46
- if '.pth' == pathlib.Path(config_path).suffix:
47
- import zipfile
48
-
49
- with zipfile.ZipFile(config_path, 'r') as zip:
50
- self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
51
- elif '.json' == pathlib.Path(config_path).suffix:
52
- with open(config_path, 'r') as f:
53
- self.param = json.loads(f.read(), object_pairs_hook=int_keys)
54
- else:
55
- self.param = default_param
56
-
57
- for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
58
- if not k in self.param:
59
- self.param[k] = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr16000_hl512.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 16000,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 16000,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 1024
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr32000_hl512.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 32000,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "kaiser_fast"
14
- }
15
- },
16
- "sr": 32000,
17
- "pre_filter_start": 1000,
18
- "pre_filter_stop": 1021
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr33075_hl384.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 33075,
8
- "hl": 384,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 33075,
17
- "pre_filter_start": 1000,
18
- "pre_filter_stop": 1021
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 1024,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 1024
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl256.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 256,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 256,
9
- "n_fft": 512,
10
- "crop_start": 0,
11
- "crop_stop": 256,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 256,
18
- "pre_filter_stop": 256
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl512.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 1024,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 1024
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 1024,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 512,
9
- "n_fft": 2048,
10
- "crop_start": 0,
11
- "crop_stop": 700,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 1023,
18
- "pre_filter_stop": 700
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/1band_sr44100_hl512_nf1024.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "bins": 512,
3
- "unstable_bins": 0,
4
- "reduction_bins": 0,
5
- "band": {
6
- "1": {
7
- "sr": 44100,
8
- "hl": 512,
9
- "n_fft": 1024,
10
- "crop_start": 0,
11
- "crop_stop": 512,
12
- "hpf_start": -1,
13
- "res_type": "sinc_best"
14
- }
15
- },
16
- "sr": 44100,
17
- "pre_filter_start": 511,
18
- "pre_filter_stop": 512
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/2band_32000.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "reduction_bins": 705,
5
- "band": {
6
- "1": {
7
- "sr": 6000,
8
- "hl": 66,
9
- "n_fft": 512,
10
- "crop_start": 0,
11
- "crop_stop": 240,
12
- "lpf_start": 60,
13
- "lpf_stop": 118,
14
- "res_type": "sinc_fastest"
15
- },
16
- "2": {
17
- "sr": 32000,
18
- "hl": 352,
19
- "n_fft": 1024,
20
- "crop_start": 22,
21
- "crop_stop": 505,
22
- "hpf_start": 44,
23
- "hpf_stop": 23,
24
- "res_type": "sinc_medium"
25
- }
26
- },
27
- "sr": 32000,
28
- "pre_filter_start": 710,
29
- "pre_filter_stop": 731
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/2band_44100_lofi.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bins": 512,
3
- "unstable_bins": 7,
4
- "reduction_bins": 510,
5
- "band": {
6
- "1": {
7
- "sr": 11025,
8
- "hl": 160,
9
- "n_fft": 768,
10
- "crop_start": 0,
11
- "crop_stop": 192,
12
- "lpf_start": 41,
13
- "lpf_stop": 139,
14
- "res_type": "sinc_fastest"
15
- },
16
- "2": {
17
- "sr": 44100,
18
- "hl": 640,
19
- "n_fft": 1024,
20
- "crop_start": 10,
21
- "crop_stop": 320,
22
- "hpf_start": 47,
23
- "hpf_stop": 15,
24
- "res_type": "sinc_medium"
25
- }
26
- },
27
- "sr": 44100,
28
- "pre_filter_start": 510,
29
- "pre_filter_stop": 512
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/2band_48000.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "reduction_bins": 705,
5
- "band": {
6
- "1": {
7
- "sr": 6000,
8
- "hl": 66,
9
- "n_fft": 512,
10
- "crop_start": 0,
11
- "crop_stop": 240,
12
- "lpf_start": 60,
13
- "lpf_stop": 240,
14
- "res_type": "sinc_fastest"
15
- },
16
- "2": {
17
- "sr": 48000,
18
- "hl": 528,
19
- "n_fft": 1536,
20
- "crop_start": 22,
21
- "crop_stop": 505,
22
- "hpf_start": 82,
23
- "hpf_stop": 22,
24
- "res_type": "sinc_medium"
25
- }
26
- },
27
- "sr": 48000,
28
- "pre_filter_start": 710,
29
- "pre_filter_stop": 731
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/3band_44100.json DELETED
@@ -1,42 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 5,
4
- "reduction_bins": 733,
5
- "band": {
6
- "1": {
7
- "sr": 11025,
8
- "hl": 128,
9
- "n_fft": 768,
10
- "crop_start": 0,
11
- "crop_stop": 278,
12
- "lpf_start": 28,
13
- "lpf_stop": 140,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 22050,
18
- "hl": 256,
19
- "n_fft": 768,
20
- "crop_start": 14,
21
- "crop_stop": 322,
22
- "hpf_start": 70,
23
- "hpf_stop": 14,
24
- "lpf_start": 283,
25
- "lpf_stop": 314,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 44100,
30
- "hl": 512,
31
- "n_fft": 768,
32
- "crop_start": 131,
33
- "crop_stop": 313,
34
- "hpf_start": 154,
35
- "hpf_stop": 141,
36
- "res_type": "sinc_medium"
37
- }
38
- },
39
- "sr": 44100,
40
- "pre_filter_start": 757,
41
- "pre_filter_stop": 768
42
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/3band_44100_mid.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "mid_side": true,
3
- "bins": 768,
4
- "unstable_bins": 5,
5
- "reduction_bins": 733,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 768,
11
- "crop_start": 0,
12
- "crop_stop": 278,
13
- "lpf_start": 28,
14
- "lpf_stop": 140,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 22050,
19
- "hl": 256,
20
- "n_fft": 768,
21
- "crop_start": 14,
22
- "crop_stop": 322,
23
- "hpf_start": 70,
24
- "hpf_stop": 14,
25
- "lpf_start": 283,
26
- "lpf_stop": 314,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 44100,
31
- "hl": 512,
32
- "n_fft": 768,
33
- "crop_start": 131,
34
- "crop_stop": 313,
35
- "hpf_start": 154,
36
- "hpf_stop": 141,
37
- "res_type": "sinc_medium"
38
- }
39
- },
40
- "sr": 44100,
41
- "pre_filter_start": 757,
42
- "pre_filter_stop": 768
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/3band_44100_msb2.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "mid_side_b2": true,
3
- "bins": 640,
4
- "unstable_bins": 7,
5
- "reduction_bins": 565,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 108,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 187,
13
- "lpf_start": 92,
14
- "lpf_stop": 186,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 22050,
19
- "hl": 216,
20
- "n_fft": 768,
21
- "crop_start": 0,
22
- "crop_stop": 212,
23
- "hpf_start": 68,
24
- "hpf_stop": 34,
25
- "lpf_start": 174,
26
- "lpf_stop": 209,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 44100,
31
- "hl": 432,
32
- "n_fft": 640,
33
- "crop_start": 66,
34
- "crop_stop": 307,
35
- "hpf_start": 86,
36
- "hpf_stop": 72,
37
- "res_type": "kaiser_fast"
38
- }
39
- },
40
- "sr": 44100,
41
- "pre_filter_start": 639,
42
- "pre_filter_stop": 640
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100.json DELETED
@@ -1,54 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "reduction_bins": 668,
5
- "band": {
6
- "1": {
7
- "sr": 11025,
8
- "hl": 128,
9
- "n_fft": 1024,
10
- "crop_start": 0,
11
- "crop_stop": 186,
12
- "lpf_start": 37,
13
- "lpf_stop": 73,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 11025,
18
- "hl": 128,
19
- "n_fft": 512,
20
- "crop_start": 4,
21
- "crop_stop": 185,
22
- "hpf_start": 36,
23
- "hpf_stop": 18,
24
- "lpf_start": 93,
25
- "lpf_stop": 185,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 22050,
30
- "hl": 256,
31
- "n_fft": 512,
32
- "crop_start": 46,
33
- "crop_stop": 186,
34
- "hpf_start": 93,
35
- "hpf_stop": 46,
36
- "lpf_start": 164,
37
- "lpf_stop": 186,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 512,
43
- "n_fft": 768,
44
- "crop_start": 121,
45
- "crop_stop": 382,
46
- "hpf_start": 138,
47
- "hpf_stop": 123,
48
- "res_type": "sinc_medium"
49
- }
50
- },
51
- "sr": 44100,
52
- "pre_filter_start": 740,
53
- "pre_filter_stop": 768
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_mid.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "bins": 768,
3
- "unstable_bins": 7,
4
- "mid_side": true,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_msb.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "mid_side_b": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_msb2.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "mid_side_b": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_reverse.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "reverse": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_44100_sw.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "stereo_w": true,
3
- "bins": 768,
4
- "unstable_bins": 7,
5
- "reduction_bins": 668,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 128,
10
- "n_fft": 1024,
11
- "crop_start": 0,
12
- "crop_stop": 186,
13
- "lpf_start": 37,
14
- "lpf_stop": 73,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 11025,
19
- "hl": 128,
20
- "n_fft": 512,
21
- "crop_start": 4,
22
- "crop_stop": 185,
23
- "hpf_start": 36,
24
- "hpf_stop": 18,
25
- "lpf_start": 93,
26
- "lpf_stop": 185,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 22050,
31
- "hl": 256,
32
- "n_fft": 512,
33
- "crop_start": 46,
34
- "crop_stop": 186,
35
- "hpf_start": 93,
36
- "hpf_stop": 46,
37
- "lpf_start": 164,
38
- "lpf_stop": 186,
39
- "res_type": "polyphase"
40
- },
41
- "4": {
42
- "sr": 44100,
43
- "hl": 512,
44
- "n_fft": 768,
45
- "crop_start": 121,
46
- "crop_stop": 382,
47
- "hpf_start": 138,
48
- "hpf_stop": 123,
49
- "res_type": "sinc_medium"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 740,
54
- "pre_filter_stop": 768
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v2.json DELETED
@@ -1,54 +0,0 @@
1
- {
2
- "bins": 672,
3
- "unstable_bins": 8,
4
- "reduction_bins": 637,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "res_type": "kaiser_fast"
49
- }
50
- },
51
- "sr": 44100,
52
- "pre_filter_start": 668,
53
- "pre_filter_stop": 672
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v2_sn.json DELETED
@@ -1,55 +0,0 @@
1
- {
2
- "bins": 672,
3
- "unstable_bins": 8,
4
- "reduction_bins": 637,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "convert_channels": "stereo_n",
49
- "res_type": "kaiser_fast"
50
- }
51
- },
52
- "sr": 44100,
53
- "pre_filter_start": 668,
54
- "pre_filter_stop": 672
55
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/4band_v3.json DELETED
@@ -1,54 +0,0 @@
1
- {
2
- "bins": 672,
3
- "unstable_bins": 8,
4
- "reduction_bins": 530,
5
- "band": {
6
- "1": {
7
- "sr": 7350,
8
- "hl": 80,
9
- "n_fft": 640,
10
- "crop_start": 0,
11
- "crop_stop": 85,
12
- "lpf_start": 25,
13
- "lpf_stop": 53,
14
- "res_type": "polyphase"
15
- },
16
- "2": {
17
- "sr": 7350,
18
- "hl": 80,
19
- "n_fft": 320,
20
- "crop_start": 4,
21
- "crop_stop": 87,
22
- "hpf_start": 25,
23
- "hpf_stop": 12,
24
- "lpf_start": 31,
25
- "lpf_stop": 62,
26
- "res_type": "polyphase"
27
- },
28
- "3": {
29
- "sr": 14700,
30
- "hl": 160,
31
- "n_fft": 512,
32
- "crop_start": 17,
33
- "crop_stop": 216,
34
- "hpf_start": 48,
35
- "hpf_stop": 24,
36
- "lpf_start": 139,
37
- "lpf_stop": 210,
38
- "res_type": "polyphase"
39
- },
40
- "4": {
41
- "sr": 44100,
42
- "hl": 480,
43
- "n_fft": 960,
44
- "crop_start": 78,
45
- "crop_stop": 383,
46
- "hpf_start": 130,
47
- "hpf_stop": 86,
48
- "res_type": "kaiser_fast"
49
- }
50
- },
51
- "sr": 44100,
52
- "pre_filter_start": 668,
53
- "pre_filter_stop": 672
54
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/modelparams/ensemble.json DELETED
@@ -1,43 +0,0 @@
1
- {
2
- "mid_side_b2": true,
3
- "bins": 1280,
4
- "unstable_bins": 7,
5
- "reduction_bins": 565,
6
- "band": {
7
- "1": {
8
- "sr": 11025,
9
- "hl": 108,
10
- "n_fft": 2048,
11
- "crop_start": 0,
12
- "crop_stop": 374,
13
- "lpf_start": 92,
14
- "lpf_stop": 186,
15
- "res_type": "polyphase"
16
- },
17
- "2": {
18
- "sr": 22050,
19
- "hl": 216,
20
- "n_fft": 1536,
21
- "crop_start": 0,
22
- "crop_stop": 424,
23
- "hpf_start": 68,
24
- "hpf_stop": 34,
25
- "lpf_start": 348,
26
- "lpf_stop": 418,
27
- "res_type": "polyphase"
28
- },
29
- "3": {
30
- "sr": 44100,
31
- "hl": 432,
32
- "n_fft": 1280,
33
- "crop_start": 132,
34
- "crop_stop": 614,
35
- "hpf_start": 172,
36
- "hpf_stop": 144,
37
- "res_type": "polyphase"
38
- }
39
- },
40
- "sr": 44100,
41
- "pre_filter_start": 1280,
42
- "pre_filter_stop": 1280
43
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/nets.py DELETED
@@ -1,166 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
-
5
- from . import layers
6
-
7
- class BaseASPPNet(nn.Module):
8
-
9
- def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
10
- super(BaseASPPNet, self).__init__()
11
- self.nn_architecture = nn_architecture
12
- self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
13
- self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
14
- self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
15
- self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
16
-
17
- if self.nn_architecture == 129605:
18
- self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
19
- self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
20
- self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
21
- else:
22
- self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
23
-
24
- self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
25
- self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
26
- self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
27
- self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
28
-
29
- def __call__(self, x):
30
- h, e1 = self.enc1(x)
31
- h, e2 = self.enc2(h)
32
- h, e3 = self.enc3(h)
33
- h, e4 = self.enc4(h)
34
-
35
- if self.nn_architecture == 129605:
36
- h, e5 = self.enc5(h)
37
- h = self.aspp(h)
38
- h = self.dec5(h, e5)
39
- else:
40
- h = self.aspp(h)
41
-
42
- h = self.dec4(h, e4)
43
- h = self.dec3(h, e3)
44
- h = self.dec2(h, e2)
45
- h = self.dec1(h, e1)
46
-
47
- return h
48
-
49
- def determine_model_capacity(n_fft_bins, nn_architecture):
50
-
51
- sp_model_arch = [31191, 33966, 129605]
52
- hp_model_arch = [123821, 123812]
53
- hp2_model_arch = [537238, 537227]
54
-
55
- if nn_architecture in sp_model_arch:
56
- model_capacity_data = [
57
- (2, 16),
58
- (2, 16),
59
- (18, 8, 1, 1, 0),
60
- (8, 16),
61
- (34, 16, 1, 1, 0),
62
- (16, 32),
63
- (32, 2, 1),
64
- (16, 2, 1),
65
- (16, 2, 1),
66
- ]
67
-
68
- if nn_architecture in hp_model_arch:
69
- model_capacity_data = [
70
- (2, 32),
71
- (2, 32),
72
- (34, 16, 1, 1, 0),
73
- (16, 32),
74
- (66, 32, 1, 1, 0),
75
- (32, 64),
76
- (64, 2, 1),
77
- (32, 2, 1),
78
- (32, 2, 1),
79
- ]
80
-
81
- if nn_architecture in hp2_model_arch:
82
- model_capacity_data = [
83
- (2, 64),
84
- (2, 64),
85
- (66, 32, 1, 1, 0),
86
- (32, 64),
87
- (130, 64, 1, 1, 0),
88
- (64, 128),
89
- (128, 2, 1),
90
- (64, 2, 1),
91
- (64, 2, 1),
92
- ]
93
-
94
- cascaded = CascadedASPPNet
95
- model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
96
-
97
- return model
98
-
99
- class CascadedASPPNet(nn.Module):
100
-
101
- def __init__(self, n_fft, model_capacity_data, nn_architecture):
102
- super(CascadedASPPNet, self).__init__()
103
- self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
104
- self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])
105
-
106
- self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
107
- self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])
108
-
109
- self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
110
- self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])
111
-
112
- self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
113
- self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
114
- self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)
115
-
116
- self.max_bin = n_fft // 2
117
- self.output_bin = n_fft // 2 + 1
118
-
119
- self.offset = 128
120
-
121
- def forward(self, x):
122
- mix = x.detach()
123
- x = x.clone()
124
-
125
- x = x[:, :, :self.max_bin]
126
-
127
- bandw = x.size()[2] // 2
128
- aux1 = torch.cat([
129
- self.stg1_low_band_net(x[:, :, :bandw]),
130
- self.stg1_high_band_net(x[:, :, bandw:])
131
- ], dim=2)
132
-
133
- h = torch.cat([x, aux1], dim=1)
134
- aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
135
-
136
- h = torch.cat([x, aux1, aux2], dim=1)
137
- h = self.stg3_full_band_net(self.stg3_bridge(h))
138
-
139
- mask = torch.sigmoid(self.out(h))
140
- mask = F.pad(
141
- input=mask,
142
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
143
- mode='replicate')
144
-
145
- if self.training:
146
- aux1 = torch.sigmoid(self.aux1_out(aux1))
147
- aux1 = F.pad(
148
- input=aux1,
149
- pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
150
- mode='replicate')
151
- aux2 = torch.sigmoid(self.aux2_out(aux2))
152
- aux2 = F.pad(
153
- input=aux2,
154
- pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
155
- mode='replicate')
156
- return mask * mix, aux1 * mix, aux2 * mix
157
- else:
158
- return mask# * mix
159
-
160
- def predict_mask(self, x):
161
- mask = self.forward(x)
162
-
163
- if self.offset > 0:
164
- mask = mask[:, :, :, self.offset:-self.offset]
165
-
166
- return mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib_v5/vr_network/nets_new.py DELETED
@@ -1,125 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
- from . import layers_new as layers
5
-
6
- class BaseNet(nn.Module):
7
-
8
- def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
9
- super(BaseNet, self).__init__()
10
- self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
11
- self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
12
- self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
13
- self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
14
- self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
15
-
16
- self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
17
-
18
- self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
19
- self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
20
- self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
21
- self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
22
- self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
23
-
24
- def __call__(self, x):
25
- e1 = self.enc1(x)
26
- e2 = self.enc2(e1)
27
- e3 = self.enc3(e2)
28
- e4 = self.enc4(e3)
29
- e5 = self.enc5(e4)
30
-
31
- h = self.aspp(e5)
32
-
33
- h = self.dec4(h, e4)
34
- h = self.dec3(h, e3)
35
- h = self.dec2(h, e2)
36
- h = torch.cat([h, self.lstm_dec2(h)], dim=1)
37
- h = self.dec1(h, e1)
38
-
39
- return h
40
-
41
- class CascadedNet(nn.Module):
42
-
43
- def __init__(self, n_fft, nn_arch_size, nout=32, nout_lstm=128):
44
- super(CascadedNet, self).__init__()
45
-
46
- self.max_bin = n_fft // 2
47
- self.output_bin = n_fft // 2 + 1
48
- self.nin_lstm = self.max_bin // 2
49
- self.offset = 64
50
- nout = 64 if nn_arch_size == 218409 else nout
51
-
52
- self.stg1_low_band_net = nn.Sequential(
53
- BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
54
- layers.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0)
55
- )
56
-
57
- self.stg1_high_band_net = BaseNet(2, nout // 4, self.nin_lstm // 2, nout_lstm // 2)
58
-
59
- self.stg2_low_band_net = nn.Sequential(
60
- BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
61
- layers.Conv2DBNActiv(nout, nout // 2, 1, 1, 0)
62
- )
63
- self.stg2_high_band_net = BaseNet(nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2)
64
-
65
- self.stg3_full_band_net = BaseNet(3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm)
66
-
67
- self.out = nn.Conv2d(nout, 2, 1, bias=False)
68
- self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
69
-
70
- def forward(self, x):
71
- x = x[:, :, :self.max_bin]
72
-
73
- bandw = x.size()[2] // 2
74
- l1_in = x[:, :, :bandw]
75
- h1_in = x[:, :, bandw:]
76
- l1 = self.stg1_low_band_net(l1_in)
77
- h1 = self.stg1_high_band_net(h1_in)
78
- aux1 = torch.cat([l1, h1], dim=2)
79
-
80
- l2_in = torch.cat([l1_in, l1], dim=1)
81
- h2_in = torch.cat([h1_in, h1], dim=1)
82
- l2 = self.stg2_low_band_net(l2_in)
83
- h2 = self.stg2_high_band_net(h2_in)
84
- aux2 = torch.cat([l2, h2], dim=2)
85
-
86
- f3_in = torch.cat([x, aux1, aux2], dim=1)
87
- f3 = self.stg3_full_band_net(f3_in)
88
-
89
- mask = torch.sigmoid(self.out(f3))
90
- mask = F.pad(
91
- input=mask,
92
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
93
- mode='replicate'
94
- )
95
-
96
- if self.training:
97
- aux = torch.cat([aux1, aux2], dim=1)
98
- aux = torch.sigmoid(self.aux_out(aux))
99
- aux = F.pad(
100
- input=aux,
101
- pad=(0, 0, 0, self.output_bin - aux.size()[2]),
102
- mode='replicate'
103
- )
104
- return mask, aux
105
- else:
106
- return mask
107
-
108
- def predict_mask(self, x):
109
- mask = self.forward(x)
110
-
111
- if self.offset > 0:
112
- mask = mask[:, :, :, self.offset:-self.offset]
113
- assert mask.size()[3] > 0
114
-
115
- return mask
116
-
117
- def predict(self, x):
118
- mask = self.forward(x)
119
- pred_mag = x * mask
120
-
121
- if self.offset > 0:
122
- pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
123
- assert pred_mag.size()[3] > 0
124
-
125
- return pred_mag