Spaces:
Running
on
Zero
Running
on
Zero
justus-tobias
commited on
Commit
·
a0de5e2
1
Parent(s):
8e9a234
cleaned code
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Moshi
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Moshi
|
3 |
+
emoji: 💨
|
4 |
colorFrom: indigo
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -2,79 +2,10 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from moshi.models import loaders, LMGen
|
5 |
-
import tempfile
|
6 |
-
import os
|
7 |
-
import soundfile as sf
|
8 |
import numpy as np
|
9 |
-
import time
|
10 |
|
11 |
|
12 |
-
def process_wav(wav):
|
13 |
|
14 |
-
mimi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MIMI_NAME)
|
15 |
-
mimi = loaders.get_mimi(mimi_weight, device='cpu')
|
16 |
-
mimi.set_num_codebooks(8) # up to 32 for mimi, but limited to 8 for moshi.
|
17 |
-
|
18 |
-
|
19 |
-
#wav = torch.randn(1, 1, 24000 * 10) # should be [B, C=1, T]
|
20 |
-
with torch.no_grad():
|
21 |
-
codes = mimi.encode(wav) # [B, K = 8, T]
|
22 |
-
# decoded = mimi.decode(codes)
|
23 |
-
|
24 |
-
# # Supports streaming too.
|
25 |
-
# frame_size = int(mimi.sample_rate / mimi.frame_rate)
|
26 |
-
# all_codes = []
|
27 |
-
# with mimi.streaming(batch_size=1):
|
28 |
-
# for offset in range(0, wav.shape[-1], frame_size):
|
29 |
-
# frame = wav[:, :, offset: offset + frame_size]
|
30 |
-
# codes = mimi.encode(frame)
|
31 |
-
# assert codes.shape[-1] == 1, codes.shape
|
32 |
-
# all_codes.append(codes)
|
33 |
-
all_codes = codes
|
34 |
-
|
35 |
-
mimi.cuda()
|
36 |
-
moshi_weight = hf_hub_download(loaders.DEFAULT_REPO, loaders.MOSHI_NAME)
|
37 |
-
moshi = loaders.get_moshi_lm(moshi_weight, device='cuda')
|
38 |
-
lm_gen = LMGen(moshi, temp=0.8, temp_text=0.7) # this handles sampling params etc.
|
39 |
-
|
40 |
-
out_wav_chunks = []
|
41 |
-
# Now we will stream over both Moshi I/O, and decode on the fly with Mimi.
|
42 |
-
with torch.no_grad(), lm_gen.streaming(1), mimi.streaming(1):
|
43 |
-
for idx, code in enumerate(all_codes):
|
44 |
-
tokens_out = lm_gen.step(code.cuda())
|
45 |
-
# tokens_out is [B, 1 + 8, 1], with tokens_out[:, 1] representing the text token.
|
46 |
-
if tokens_out is not None:
|
47 |
-
wav_chunk = mimi.decode(tokens_out[:, 1:])
|
48 |
-
out_wav_chunks.append(wav_chunk)
|
49 |
-
print(idx, end='\r')
|
50 |
-
out_wav = torch.cat(out_wav_chunks, dim=-1)
|
51 |
-
|
52 |
-
return out_wav
|
53 |
-
|
54 |
-
def select_audio_frame(audio_tensor, frame_size, start_index=0):
|
55 |
-
# Ensure the audio tensor is in the correct shape (1, 1, samples)
|
56 |
-
if audio_tensor.dim() != 3 or audio_tensor.size(0) != 1 or audio_tensor.size(1) != 1:
|
57 |
-
raise ValueError("Audio tensor must have shape (1, 1, samples)")
|
58 |
-
|
59 |
-
# Get the total number of samples
|
60 |
-
total_samples = audio_tensor.size(2)
|
61 |
-
|
62 |
-
# If i is not provided, use the total number of samples
|
63 |
-
i = total_samples
|
64 |
-
|
65 |
-
# Calculate the start and end indices
|
66 |
-
start_index = max(0, i - frame_size)
|
67 |
-
end_index = i
|
68 |
-
|
69 |
-
# Extract the frame
|
70 |
-
frame = audio_tensor[0, 0, start_index:end_index]
|
71 |
-
|
72 |
-
# If the frame is smaller than the desired size, pad with zeros at the beginning
|
73 |
-
if frame.size(0) < frame_size:
|
74 |
-
frame = torch.nn.functional.pad(frame, (frame_size - frame.size(0), 0))
|
75 |
-
|
76 |
-
# Reshape to match the original tensor shape
|
77 |
-
return frame.unsqueeze(0).unsqueeze(0)
|
78 |
|
79 |
def process_wav_new(in_wav):
|
80 |
"""wav = torch.randn(1, 1, 24000 * 10) # should be [B, C=1, T]"""
|
@@ -193,6 +124,10 @@ Monologue” method significantly improves the linguistic quality of generated s
|
|
193 |
- **Demo:** [demo](https://moshi.chat/) """)
|
194 |
|
195 |
|
|
|
|
|
|
|
|
|
196 |
|
197 |
input_audio = gr.Audio(sources="microphone", label="Input Audio")
|
198 |
output_audio = gr.Audio(label="Processed Audio", streaming=True, autoplay=True)
|
@@ -221,52 +156,4 @@ Monologue” method significantly improves the linguistic quality of generated s
|
|
221 |
elem_id="citation-button",
|
222 |
show_copy_button=True,
|
223 |
)
|
224 |
-
demo.launch(debug=True)
|
225 |
-
|
226 |
-
##########################################################################################################
|
227 |
-
##########################################################################################################
|
228 |
-
|
229 |
-
# import gradio as gr
|
230 |
-
# import numpy as np
|
231 |
-
# import time
|
232 |
-
|
233 |
-
# def process_stream(audio, instream):
|
234 |
-
|
235 |
-
# if audio is None:
|
236 |
-
# return gr.update(), instream
|
237 |
-
# if instream is None:
|
238 |
-
# ret = audio
|
239 |
-
# else:
|
240 |
-
# print("STREAM RECIEVED")
|
241 |
-
# stream = (audio[0], np.concatenate((instream[1], audio[1])))
|
242 |
-
|
243 |
-
# # Assuming instream[1] and audio[1] are valid inputs for convert2wav
|
244 |
-
# wav1 = convert2wav(instream[1])
|
245 |
-
# wav2 = convert2wav(audio[1])
|
246 |
-
|
247 |
-
# # Concatenate along the last dimension (time axis)
|
248 |
-
# combined_wav = torch.cat((wav1, wav2), dim=2)
|
249 |
-
# print("WAV COMBINED")
|
250 |
-
|
251 |
-
|
252 |
-
# yield from process_wav_new(combined_wav, stream)
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
# with gr.Blocks() as demo:
|
258 |
-
# gr.Markdown("# Moshi Demo")
|
259 |
-
# gr.Markdown(" ")
|
260 |
-
# gr.Markdown("-----------")
|
261 |
-
|
262 |
-
|
263 |
-
# inp = gr.Audio(sources="microphone")
|
264 |
-
# out = gr.Audio(autoplay=True)
|
265 |
-
# stream = gr.State()
|
266 |
-
# clear = gr.Button("Clear")
|
267 |
-
|
268 |
-
# inp.stream(process_stream, [inp, stream], [out, stream])
|
269 |
-
# clear.click(lambda: [None, None, None], None, [inp, out, stream])
|
270 |
-
|
271 |
-
|
272 |
-
# demo.launch(debug=True)
|
|
|
2 |
import torch
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from moshi.models import loaders, LMGen
|
|
|
|
|
|
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def process_wav_new(in_wav):
|
11 |
"""wav = torch.randn(1, 1, 24000 * 10) # should be [B, C=1, T]"""
|
|
|
124 |
- **Demo:** [demo](https://moshi.chat/) """)
|
125 |
|
126 |
|
127 |
+
gr.Markdown("""
|
128 |
+
🚨
|
129 |
+
The Model will produce a lot of silence, because it is actually meant to stream the input and output.
|
130 |
+
I will try to create a demo which works with the streaming.""")
|
131 |
|
132 |
input_audio = gr.Audio(sources="microphone", label="Input Audio")
|
133 |
output_audio = gr.Audio(label="Processed Audio", streaming=True, autoplay=True)
|
|
|
156 |
elem_id="citation-button",
|
157 |
show_copy_button=True,
|
158 |
)
|
159 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|