Update app.py
Browse files
app.py
CHANGED
@@ -1,378 +1,77 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
# AutoTokenizer,
|
6 |
-
# TextIteratorStreamer,
|
7 |
-
# pipeline
|
8 |
-
# )
|
9 |
-
# import os
|
10 |
-
# from threading import Thread
|
11 |
-
# import spaces
|
12 |
-
# import time
|
13 |
-
|
14 |
-
# import langchain
|
15 |
-
# import os
|
16 |
-
# import glob
|
17 |
-
# import gc
|
18 |
-
|
19 |
-
# # loaders
|
20 |
-
# from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
21 |
-
|
22 |
-
# # splits
|
23 |
-
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
24 |
-
|
25 |
-
# # prompts
|
26 |
-
# from langchain import PromptTemplate
|
27 |
-
|
28 |
-
# # vector stores
|
29 |
-
# from langchain_community.vectorstores import FAISS
|
30 |
-
|
31 |
-
# # models
|
32 |
-
# from langchain.llms import HuggingFacePipeline
|
33 |
-
# from langchain.embeddings import HuggingFaceInstructEmbeddings
|
34 |
-
|
35 |
-
# # retrievers
|
36 |
-
# from langchain.chains import RetrievalQA
|
37 |
-
|
38 |
-
|
39 |
-
# import subprocess
|
40 |
-
|
41 |
-
# subprocess.run(
|
42 |
-
# "pip install flash-attn --no-build-isolation",
|
43 |
-
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
44 |
-
# shell=True,
|
45 |
-
# )
|
46 |
-
|
47 |
-
|
48 |
-
# class CFG:
|
49 |
-
# DEBUG = False
|
50 |
-
|
51 |
-
# ### LLM
|
52 |
-
# model_name = 'justinj92/phi3-orpo'
|
53 |
-
# temperature = 0.7
|
54 |
-
# top_p = 0.90
|
55 |
-
# repetition_penalty = 1.15
|
56 |
-
# max_len = 8192
|
57 |
-
# max_new_tokens = 512
|
58 |
-
|
59 |
-
# ### splitting
|
60 |
-
# split_chunk_size = 800
|
61 |
-
# split_overlap = 400
|
62 |
-
|
63 |
-
# ### embeddings
|
64 |
-
# embeddings_model_repo = 'BAAI/bge-base-en-v1.5'
|
65 |
-
|
66 |
-
# ### similar passages
|
67 |
-
# k = 6
|
68 |
-
|
69 |
-
# ### paths
|
70 |
-
# PDFs_path = './data'
|
71 |
-
# Embeddings_path = './embeddings/input'
|
72 |
-
# Output_folder = './ml-papers-vector'
|
73 |
-
|
74 |
-
# loader = DirectoryLoader(CFG.PDFs_path, glob="*.pdf", loader_cls=PyPDFLoader)
|
75 |
-
|
76 |
-
# documents = loader.load()
|
77 |
-
|
78 |
-
|
79 |
-
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = CFG.split_chunk_size, chunk_overlap = CFG.split_overlap)
|
80 |
-
# texts = text_splitter.split_documents(documents)
|
81 |
-
|
82 |
-
# if not os.path.exists(CFG.Embeddings_path + '/index.faiss'):
|
83 |
-
# embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
|
84 |
-
# vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
|
85 |
-
# vectordb.save_local(f"{CFG.Output_folder}/faiss_index_ml_papers")
|
86 |
-
|
87 |
-
# embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
|
88 |
-
# vectordb = FAISS.load_local(CFG.Output_folder + '/faiss_index_ml_papers', embeddings, allow_dangerous_deserialization=True)
|
89 |
-
|
90 |
-
|
91 |
-
# def build_model(model_repo = CFG.model_name):
|
92 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
93 |
-
# model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
|
94 |
-
# if torch.cuda.is_available():
|
95 |
-
# device = torch.device("cuda")
|
96 |
-
# print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
97 |
-
# else:
|
98 |
-
# device = torch.device("cpu")
|
99 |
-
# print("Using CPU")
|
100 |
-
# device = torch.device("cuda")
|
101 |
-
# model = model.to(device)
|
102 |
-
|
103 |
-
# return tokenizer, model
|
104 |
-
|
105 |
-
|
106 |
-
# tok, model = build_model(model_repo = CFG.model_name)
|
107 |
-
|
108 |
-
# terminators = [
|
109 |
-
# tok.eos_token_id,
|
110 |
-
# 32007,
|
111 |
-
# 32011,
|
112 |
-
# 32001,
|
113 |
-
# 32000
|
114 |
-
# ]
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
# pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
|
120 |
-
|
121 |
-
# llm = HuggingFacePipeline(pipeline = pipe)
|
122 |
-
|
123 |
-
# prompt_template = """
|
124 |
-
# <|system|>
|
125 |
-
|
126 |
-
# You are an expert assistant that answers questions about machine learning and Large Language Models (LLMs).
|
127 |
-
|
128 |
-
# You are given some extracted parts from machine learning papers along with a question.
|
129 |
-
|
130 |
-
# If you don't know the answer, just say "I don't know." Don't try to make up an answer.
|
131 |
-
|
132 |
-
# It is very important that you ALWAYS answer the question in the same language the question is in. Remember to always do that.
|
133 |
-
|
134 |
-
# Use only the following pieces of context to answer the question at the end.
|
135 |
-
|
136 |
-
# <|end|>
|
137 |
-
|
138 |
-
# <|user|>
|
139 |
-
|
140 |
-
# Context: {context}
|
141 |
-
|
142 |
-
# Question is below. Remember to answer in the same language:
|
143 |
-
|
144 |
-
# Question: {question}
|
145 |
-
|
146 |
-
# <|end|>
|
147 |
-
|
148 |
-
# <|assistant|>
|
149 |
-
|
150 |
-
# """
|
151 |
-
|
152 |
-
|
153 |
-
# PROMPT = PromptTemplate(
|
154 |
-
# template = prompt_template,
|
155 |
-
# input_variables = ["context", "question"]
|
156 |
-
# )
|
157 |
-
|
158 |
-
# retriever = vectordb.as_retriever(
|
159 |
-
# search_type = "similarity",
|
160 |
-
# search_kwargs = {"k": CFG.k}
|
161 |
-
# )
|
162 |
-
|
163 |
-
# qa_chain = RetrievalQA.from_chain_type(
|
164 |
-
# llm = llm,
|
165 |
-
# chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
|
166 |
-
# retriever = retriever,
|
167 |
-
# chain_type_kwargs = {"prompt": PROMPT},
|
168 |
-
# return_source_documents = True,
|
169 |
-
# verbose = False
|
170 |
-
# )
|
171 |
-
|
172 |
-
|
173 |
-
# def wrap_text_preserve_newlines(text, width=1500):
|
174 |
-
# # Split the input text into lines based on newline characters
|
175 |
-
# lines = text.split('\n')
|
176 |
-
|
177 |
-
# # Wrap each line individually
|
178 |
-
# wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
179 |
-
|
180 |
-
# # Join the wrapped lines back together using newline characters
|
181 |
-
# wrapped_text = '\n'.join(wrapped_lines)
|
182 |
-
|
183 |
-
# return wrapped_text
|
184 |
-
|
185 |
-
|
186 |
-
# def process_llm_response(llm_response):
|
187 |
-
# ans = wrap_text_preserve_newlines(llm_response['result'])
|
188 |
-
|
189 |
-
# sources_used = ' \n'.join(
|
190 |
-
# [
|
191 |
-
# source.metadata['source'].split('/')[-1][:-4]
|
192 |
-
# + ' - page: '
|
193 |
-
# + str(source.metadata['page'])
|
194 |
-
# for source in llm_response['source_documents']
|
195 |
-
# ]
|
196 |
-
# )
|
197 |
-
|
198 |
-
# ans = ans + '\n\nSources: \n' + sources_used
|
199 |
-
|
200 |
-
# ### return only the text after the pattern
|
201 |
-
# pattern = "<|assistant|>"
|
202 |
-
# index = ans.find(pattern)
|
203 |
-
# if index != -1:
|
204 |
-
# ans = ans[index + len(pattern):]
|
205 |
-
|
206 |
-
# return ans.strip()
|
207 |
-
|
208 |
-
# @spaces.GPU
|
209 |
-
# def llm_ans(message, history):
|
210 |
-
|
211 |
-
# llm_response = qa_chain.invoke(message)
|
212 |
-
# ans = process_llm_response(llm_response)
|
213 |
-
|
214 |
-
# return ans
|
215 |
-
|
216 |
-
|
217 |
-
# # @spaces.GPU(duration=60)
|
218 |
-
# # def chat(message, history, temperature, do_sample, max_tokens):
|
219 |
-
# # chat = [{"role": "system", "content": "You are ORPO Tuned Phi Beast. Answer all questions in the most helpful way. No yapping."}]
|
220 |
-
# # for item in history:
|
221 |
-
# # chat.append({"role": "user", "content": item[0]})
|
222 |
-
# # if item[1] is not None:
|
223 |
-
# # chat.append({"role": "assistant", "content": item[1]})
|
224 |
-
# # chat.append({"role": "user", "content": message})
|
225 |
-
# # messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
226 |
-
# # model_inputs = tok([messages], return_tensors="pt").to(device)
|
227 |
-
# # streamer = TextIteratorStreamer(
|
228 |
-
# # tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
229 |
-
# # )
|
230 |
-
# # generate_kwargs = dict(
|
231 |
-
# # model_inputs,
|
232 |
-
# # streamer=streamer,
|
233 |
-
# # max_new_tokens=max_tokens,
|
234 |
-
# # do_sample=True,
|
235 |
-
# # temperature=temperature,
|
236 |
-
# # eos_token_id=terminators,
|
237 |
-
# # )
|
238 |
-
|
239 |
-
# # if temperature == 0:
|
240 |
-
# # generate_kwargs["do_sample"] = False
|
241 |
-
|
242 |
-
# # t = Thread(target=model.generate, kwargs=generate_kwargs)
|
243 |
-
# # t.start()
|
244 |
-
|
245 |
-
# # partial_text = ""
|
246 |
-
# # for new_text in streamer:
|
247 |
-
# # partial_text += new_text
|
248 |
-
# # yield partial_text
|
249 |
-
|
250 |
-
# # yield partial_text
|
251 |
-
|
252 |
-
|
253 |
-
# demo = gr.ChatInterface(
|
254 |
-
# fn=llm_ans,
|
255 |
-
# examples=[["Write me a poem about Machine Learning."]],
|
256 |
-
# # multimodal=False,
|
257 |
-
# stop_btn="Stop Generation",
|
258 |
-
# title="Chat With LLMs",
|
259 |
-
# description="Now Running Phi3-ORPO",
|
260 |
-
# )
|
261 |
-
# demo.launch()
|
262 |
-
|
263 |
-
|
264 |
-
import gradio as gr
|
265 |
import torch
|
266 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
267 |
-
import os
|
268 |
import spaces
|
269 |
-
from threading import Thread
|
270 |
-
|
271 |
-
import langchain
|
272 |
-
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
|
273 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
274 |
-
from langchain import PromptTemplate
|
275 |
-
from langchain_community.vectorstores import FAISS
|
276 |
-
from langchain.llms import HuggingFacePipeline
|
277 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
278 |
-
from langchain.chains import RetrievalQA
|
279 |
-
import subprocess
|
280 |
-
import textwrap
|
281 |
-
|
282 |
-
# Installation command for specific libraries
|
283 |
-
subprocess.run("pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True)
|
284 |
-
|
285 |
-
class CFG:
|
286 |
-
DEBUG = False
|
287 |
-
model_name = 'justinj92/phi3-orpo'
|
288 |
-
temperature = 0.7
|
289 |
-
top_p = 0.90
|
290 |
-
repetition_penalty = 1.15
|
291 |
-
max_len = 8192
|
292 |
-
max_new_tokens = 512
|
293 |
-
split_chunk_size = 800
|
294 |
-
split_overlap = 400
|
295 |
-
embeddings_model_repo = 'BAAI/bge-base-en-v1.5'
|
296 |
-
k = 6
|
297 |
-
PDFs_path = './data'
|
298 |
-
Embeddings_path = './embeddings/input'
|
299 |
-
Output_folder = './ml-papers-vector'
|
300 |
-
|
301 |
-
loader = DirectoryLoader(CFG.PDFs_path, glob="*.pdf", loader_cls=PyPDFLoader)
|
302 |
-
documents = loader.load()
|
303 |
-
|
304 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CFG.split_chunk_size, chunk_overlap=CFG.split_overlap)
|
305 |
-
texts = text_splitter.split_documents(documents)
|
306 |
-
|
307 |
-
if not os.path.exists(f"{CFG.Embeddings_path}/index.faiss"):
|
308 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
|
309 |
-
vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
|
310 |
-
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_ml_papers")
|
311 |
-
|
312 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name=CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
|
313 |
-
vectordb = FAISS.load_local(f"{CFG.Output_folder}/faiss_index_ml_papers", embeddings, allow_dangerous_deserialization=True)
|
314 |
-
|
315 |
-
|
316 |
-
def build_model(model_repo=CFG.model_name):
|
317 |
-
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
318 |
-
model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
|
319 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
320 |
-
model = model.to(device)
|
321 |
-
return tokenizer, model
|
322 |
-
|
323 |
-
tok, model = build_model()
|
324 |
-
|
325 |
-
terminators = [tok.eos_token_id, 32007, 32011, 32001, 32000]
|
326 |
-
|
327 |
-
pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
|
328 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
329 |
-
|
330 |
-
prompt_template = """
|
331 |
-
You are an expert assistant that answers questions about machine learning and Large Language Models (LLMs).
|
332 |
-
You are given some extracted parts from machine learning papers along with a question.
|
333 |
-
If you don't know the answer, just say "I don't know." Don't try to make up an answer.
|
334 |
-
It is very important that you ALWAYS answer the question in the same language the question is in. Remember to always do that.
|
335 |
-
Use only the following pieces of context to answer the question at the end.
|
336 |
-
Context: {context}
|
337 |
-
Question is below. Remember to answer in the same language:
|
338 |
-
Question: {question}
|
339 |
-
"""
|
340 |
-
|
341 |
-
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
342 |
-
|
343 |
-
retriever = vectordb.as_retriever(search_type="similarity", search_kwargs={"k": CFG.k})
|
344 |
-
|
345 |
-
|
346 |
-
def process_llm_response(llm_response):
|
347 |
-
ans = textwrap.fill(llm_response['result'], width=1500)
|
348 |
-
sources_used = ' \n'.join([f"{source.metadata['source'].split('/')[-1][:-4]} - page: {str(source.metadata['page'])}" for source in llm_response['source_documents']])
|
349 |
-
|
350 |
-
return f"{ans}\n\nSources:\n{sources_used}"
|
351 |
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
|
|
|
|
|
|
|
|
354 |
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
|
357 |
|
358 |
-
|
359 |
-
def llm_ans(message, history):
|
360 |
-
terminators = [tok.eos_token_id, 32007, 32011, 32001, 32000]
|
361 |
-
pipe = pipeline(task="text-generation", model=model, tokenizer=tok, eos_token_id=terminators, do_sample=True, max_new_tokens=CFG.max_new_tokens, temperature=CFG.temperature, top_p=CFG.top_p, repetition_penalty=CFG.repetition_penalty)
|
362 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
363 |
-
qa_chain = RetrievalQA(llm=llm, retriever=retriever, prompt_template=PROMPT, return_source_documents=True, verbose=False)
|
364 |
-
|
365 |
-
|
366 |
-
llm_response = qa_chain.invoke(message)
|
367 |
-
return process_llm_response(llm_response)
|
368 |
|
|
|
|
|
|
|
|
|
369 |
|
370 |
-
|
371 |
-
|
372 |
-
examples=[["Write me a poem about Machine Learning."]],
|
373 |
-
# multimodal=False,
|
374 |
-
stop_btn="Stop Generation",
|
375 |
-
title="Chat With LLMs",
|
376 |
-
description="Now Running Phi3-ORPO",
|
377 |
-
)
|
378 |
-
demo.launch()
|
|
|
1 |
+
from llama_index.core import VectorStoreIndex,SimpleDirectoryReader,ServiceContext,SummaryIndex
|
2 |
+
from llama_index.llms.huggingface import HuggingFaceLLM
|
3 |
+
from llama_index.core import Settings
|
4 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import torch
|
|
|
|
|
6 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
+
documents = SimpleDirectoryReader("./data").load_data()
|
10 |
+
# vector_index = VectorStoreIndex.from_documents(documents)
|
11 |
+
summary_index = SummaryIndex.from_documents(documents)
|
12 |
+
|
13 |
+
def messages_to_prompt(messages):
|
14 |
+
prompt = ""
|
15 |
+
system_found = False
|
16 |
+
for message in messages:
|
17 |
+
if message.role == "system":
|
18 |
+
prompt += f"<|system|>\n{message.content}<|end|>\n"
|
19 |
+
system_found = True
|
20 |
+
elif message.role == "user":
|
21 |
+
prompt += f"<|user|>\n{message.content}<|end|>\n"
|
22 |
+
elif message.role == "assistant":
|
23 |
+
prompt += f"<|assistant|>\n{message.content}<|end|>\n"
|
24 |
+
else:
|
25 |
+
prompt += f"<|user|>\n{message.content}<|end|>\n"
|
26 |
+
|
27 |
+
# trailing prompt
|
28 |
+
prompt += "<|assistant|>\n"
|
29 |
+
|
30 |
+
if not system_found:
|
31 |
+
prompt = (
|
32 |
+
"<|system|>\nYou are a helpful AI research assistant built by Justin. You only answer from the context provided.<|end|>\n" + prompt
|
33 |
+
)
|
34 |
+
|
35 |
+
return prompt
|
36 |
+
|
37 |
+
llm = HuggingFaceLLM(
|
38 |
+
model_name="justinj92/phi3-orpo",
|
39 |
+
model_kwargs={
|
40 |
+
"trust_remote_code": True,
|
41 |
+
"torch_dtype": torch.bfloat16
|
42 |
+
},
|
43 |
+
generate_kwargs={"do_sample": True, "temperature": 0.7},
|
44 |
+
tokenizer_name="justinj92/phi3-orpo",
|
45 |
+
query_wrapper_prompt=(
|
46 |
+
"<|system|>\n"
|
47 |
+
"You are a helpful AI research assistant built by Justin. You only answer from the context provided.<|end|>\n"
|
48 |
+
"<|user|>\n"
|
49 |
+
"{query_str}<|end|>\n"
|
50 |
+
"<|assistant|>\n"
|
51 |
+
),
|
52 |
+
messages_to_prompt=messages_to_prompt,
|
53 |
+
is_chat_model=True,
|
54 |
+
)
|
55 |
|
56 |
+
Settings.llm = llm
|
57 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
58 |
+
model_name="BAAI/bge-small-en-v1.5"
|
59 |
+
)
|
60 |
|
61 |
+
service_context = ServiceContext.from_defaults(
|
62 |
+
chunk_size=1024,
|
63 |
+
llm=llm,
|
64 |
+
embed_model=Settings.embed_model
|
65 |
+
)
|
66 |
|
67 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
68 |
|
69 |
+
query_engine = index.as_query_engine()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
@spaces.GPU
|
72 |
+
def predict(input, history):
|
73 |
+
response = query_engine.query(input)
|
74 |
+
return str(response)
|
75 |
|
76 |
+
import gradio as gr
|
77 |
+
gr.ChatInterface(predict).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|