justin-zk commited on
Commit
a2717a5
1 Parent(s): 08b16d1
.gitattributes CHANGED
@@ -32,4 +32,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
35
  *.jpg filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.psd filter=lfs diff=lfs merge=lfs -text
36
+ examples/colorful_sneaker_00.jpg filter=lfs diff=lfs merge=lfs -text
37
+ examples/colorful_sneaker_01.jpg filter=lfs diff=lfs merge=lfs -text
38
+ examples/colorful_sneaker_02.jpg filter=lfs diff=lfs merge=lfs -text
39
  *.jpg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lation and distribution
2
+ __pycache__
3
+ _ext
4
+ *.pyc
5
+ *.pyd
6
+ *.so
7
+ *.dll
8
+ *.egg-info/
9
+ build/
10
+ dist/
11
+ wheels/
12
+
13
+ # pytorch/python/numpy formats
14
+ *.pth
15
+ *.pkl
16
+ *.npy
17
+ *.ts
18
+ model_ts*.txt
19
+
20
+ # onnx models
21
+ *.onnx
22
+
23
+ # ipython/jupyter notebooks
24
+ **/.ipynb_checkpoints/
25
+
26
+ # Editor temporaries
27
+ *.swn
28
+ *.swo
29
+ *.swp
30
+ *~
31
+
32
+ # editor settings
33
+ .idea
34
+ .vscode
35
+ _darcs
36
+
37
+ # output
38
+ data
39
+ work_dirs
40
+
per_segment_anything/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .build_sam import (
8
+ build_sam,
9
+ build_sam_vit_h,
10
+ build_sam_vit_l,
11
+ build_sam_vit_b,
12
+ sam_model_registry,
13
+ )
14
+ from .predictor import SamPredictor
15
+ from .automatic_mask_generator import SamAutomaticMaskGenerator
per_segment_anything/automatic_mask_generator.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
10
+
11
+ from typing import Any, Dict, List, Optional, Tuple
12
+
13
+ from .modeling import Sam
14
+ from .predictor import SamPredictor
15
+ from .utils.amg import (
16
+ MaskData,
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ remove_small_regions,
28
+ rle_to_mask,
29
+ uncrop_boxes_xyxy,
30
+ uncrop_masks,
31
+ uncrop_points,
32
+ )
33
+
34
+
35
+ class SamAutomaticMaskGenerator:
36
+ def __init__(
37
+ self,
38
+ model: Sam,
39
+ points_per_side: Optional[int] = 32,
40
+ points_per_batch: int = 64,
41
+ pred_iou_thresh: float = 0.88,
42
+ stability_score_thresh: float = 0.95,
43
+ stability_score_offset: float = 1.0,
44
+ box_nms_thresh: float = 0.7,
45
+ crop_n_layers: int = 0,
46
+ crop_nms_thresh: float = 0.7,
47
+ crop_overlap_ratio: float = 512 / 1500,
48
+ crop_n_points_downscale_factor: int = 1,
49
+ point_grids: Optional[List[np.ndarray]] = None,
50
+ min_mask_region_area: int = 0,
51
+ output_mode: str = "binary_mask",
52
+ ) -> None:
53
+ """
54
+ Using a SAM model, generates masks for the entire image.
55
+ Generates a grid of point prompts over the image, then filters
56
+ low quality and duplicate masks. The default settings are chosen
57
+ for SAM with a ViT-H backbone.
58
+
59
+ Arguments:
60
+ model (Sam): The SAM model to use for mask prediction.
61
+ points_per_side (int or None): The number of points to be sampled
62
+ along one side of the image. The total number of points is
63
+ points_per_side**2. If None, 'point_grids' must provide explicit
64
+ point sampling.
65
+ points_per_batch (int): Sets the number of points run simultaneously
66
+ by the model. Higher numbers may be faster but use more GPU memory.
67
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
68
+ model's predicted mask quality.
69
+ stability_score_thresh (float): A filtering threshold in [0,1], using
70
+ the stability of the mask under changes to the cutoff used to binarize
71
+ the model's mask predictions.
72
+ stability_score_offset (float): The amount to shift the cutoff when
73
+ calculated the stability score.
74
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
75
+ suppression to filter duplicate masks.
76
+ crop_n_layers (int): If >0, mask prediction will be run again on
77
+ crops of the image. Sets the number of layers to run, where each
78
+ layer has 2**i_layer number of image crops.
79
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
80
+ suppression to filter duplicate masks between different crops.
81
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
82
+ In the first crop layer, crops will overlap by this fraction of
83
+ the image length. Later layers with more crops scale down this overlap.
84
+ crop_n_points_downscale_factor (int): The number of points-per-side
85
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
86
+ point_grids (list(np.ndarray) or None): A list over explicit grids
87
+ of points used for sampling, normalized to [0,1]. The nth grid in the
88
+ list is used in the nth crop layer. Exclusive with points_per_side.
89
+ min_mask_region_area (int): If >0, postprocessing will be applied
90
+ to remove disconnected regions and holes in masks with area smaller
91
+ than min_mask_region_area. Requires opencv.
92
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
93
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
94
+ For large resolutions, 'binary_mask' may consume large amounts of
95
+ memory.
96
+ """
97
+
98
+ assert (points_per_side is None) != (
99
+ point_grids is None
100
+ ), "Exactly one of points_per_side or point_grid must be provided."
101
+ if points_per_side is not None:
102
+ self.point_grids = build_all_layer_point_grids(
103
+ points_per_side,
104
+ crop_n_layers,
105
+ crop_n_points_downscale_factor,
106
+ )
107
+ elif point_grids is not None:
108
+ self.point_grids = point_grids
109
+ else:
110
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
111
+
112
+ assert output_mode in [
113
+ "binary_mask",
114
+ "uncompressed_rle",
115
+ "coco_rle",
116
+ ], f"Unknown output_mode {output_mode}."
117
+ if output_mode == "coco_rle":
118
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
119
+
120
+ if min_mask_region_area > 0:
121
+ import cv2 # type: ignore # noqa: F401
122
+
123
+ self.predictor = SamPredictor(model)
124
+ self.points_per_batch = points_per_batch
125
+ self.pred_iou_thresh = pred_iou_thresh
126
+ self.stability_score_thresh = stability_score_thresh
127
+ self.stability_score_offset = stability_score_offset
128
+ self.box_nms_thresh = box_nms_thresh
129
+ self.crop_n_layers = crop_n_layers
130
+ self.crop_nms_thresh = crop_nms_thresh
131
+ self.crop_overlap_ratio = crop_overlap_ratio
132
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
133
+ self.min_mask_region_area = min_mask_region_area
134
+ self.output_mode = output_mode
135
+
136
+ @torch.no_grad()
137
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
138
+ """
139
+ Generates masks for the given image.
140
+
141
+ Arguments:
142
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
143
+
144
+ Returns:
145
+ list(dict(str, any)): A list over records for masks. Each record is
146
+ a dict containing the following keys:
147
+ segmentation (dict(str, any) or np.ndarray): The mask. If
148
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
149
+ is a dictionary containing the RLE.
150
+ bbox (list(float)): The box around the mask, in XYWH format.
151
+ area (int): The area in pixels of the mask.
152
+ predicted_iou (float): The model's own prediction of the mask's
153
+ quality. This is filtered by the pred_iou_thresh parameter.
154
+ point_coords (list(list(float))): The point coordinates input
155
+ to the model to generate this mask.
156
+ stability_score (float): A measure of the mask's quality. This
157
+ is filtered on using the stability_score_thresh parameter.
158
+ crop_box (list(float)): The crop of the image used to generate
159
+ the mask, given in XYWH format.
160
+ """
161
+
162
+ # Generate masks
163
+ mask_data = self._generate_masks(image)
164
+
165
+ # Filter small disconnected regions and holes in masks
166
+ if self.min_mask_region_area > 0:
167
+ mask_data = self.postprocess_small_regions(
168
+ mask_data,
169
+ self.min_mask_region_area,
170
+ max(self.box_nms_thresh, self.crop_nms_thresh),
171
+ )
172
+
173
+ # Encode masks
174
+ if self.output_mode == "coco_rle":
175
+ mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
176
+ elif self.output_mode == "binary_mask":
177
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
178
+ else:
179
+ mask_data["segmentations"] = mask_data["rles"]
180
+
181
+ # Write mask records
182
+ curr_anns = []
183
+ for idx in range(len(mask_data["segmentations"])):
184
+ ann = {
185
+ "segmentation": mask_data["segmentations"][idx],
186
+ "area": area_from_rle(mask_data["rles"][idx]),
187
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
188
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
189
+ "point_coords": [mask_data["points"][idx].tolist()],
190
+ "stability_score": mask_data["stability_score"][idx].item(),
191
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
192
+ }
193
+ curr_anns.append(ann)
194
+
195
+ return curr_anns
196
+
197
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
198
+ orig_size = image.shape[:2]
199
+ crop_boxes, layer_idxs = generate_crop_boxes(
200
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
201
+ )
202
+
203
+ # Iterate over image crops
204
+ data = MaskData()
205
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
206
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
207
+ data.cat(crop_data)
208
+
209
+ # Remove duplicate masks between crops
210
+ if len(crop_boxes) > 1:
211
+ # Prefer masks from smaller crops
212
+ scores = 1 / box_area(data["crop_boxes"])
213
+ scores = scores.to(data["boxes"].device)
214
+ keep_by_nms = batched_nms(
215
+ data["boxes"].float(),
216
+ scores,
217
+ torch.zeros_like(data["boxes"][:, 0]), # categories
218
+ iou_threshold=self.crop_nms_thresh,
219
+ )
220
+ data.filter(keep_by_nms)
221
+
222
+ data.to_numpy()
223
+ return data
224
+
225
+ def _process_crop(
226
+ self,
227
+ image: np.ndarray,
228
+ crop_box: List[int],
229
+ crop_layer_idx: int,
230
+ orig_size: Tuple[int, ...],
231
+ ) -> MaskData:
232
+ # Crop the image and calculate embeddings
233
+ x0, y0, x1, y1 = crop_box
234
+ cropped_im = image[y0:y1, x0:x1, :]
235
+ cropped_im_size = cropped_im.shape[:2]
236
+ self.predictor.set_image(cropped_im)
237
+
238
+ # Get points for this crop
239
+ points_scale = np.array(cropped_im_size)[None, ::-1]
240
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
241
+
242
+ # Generate masks for this crop in batches
243
+ data = MaskData()
244
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
245
+ batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
246
+ data.cat(batch_data)
247
+ del batch_data
248
+ self.predictor.reset_image()
249
+
250
+ # Remove duplicates within this crop.
251
+ keep_by_nms = batched_nms(
252
+ data["boxes"].float(),
253
+ data["iou_preds"],
254
+ torch.zeros_like(data["boxes"][:, 0]), # categories
255
+ iou_threshold=self.box_nms_thresh,
256
+ )
257
+ data.filter(keep_by_nms)
258
+
259
+ # Return to the original image frame
260
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
261
+ data["points"] = uncrop_points(data["points"], crop_box)
262
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
263
+
264
+ return data
265
+
266
+ def _process_batch(
267
+ self,
268
+ points: np.ndarray,
269
+ im_size: Tuple[int, ...],
270
+ crop_box: List[int],
271
+ orig_size: Tuple[int, ...],
272
+ ) -> MaskData:
273
+ orig_h, orig_w = orig_size
274
+
275
+ # Run model on this batch
276
+ transformed_points = self.predictor.transform.apply_coords(points, im_size)
277
+ in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
278
+ in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
279
+ masks, iou_preds, _ = self.predictor.predict_torch(
280
+ in_points[:, None, :],
281
+ in_labels[:, None],
282
+ multimask_output=True,
283
+ return_logits=True,
284
+ )
285
+
286
+ # Serialize predictions and store in MaskData
287
+ data = MaskData(
288
+ masks=masks.flatten(0, 1),
289
+ iou_preds=iou_preds.flatten(0, 1),
290
+ points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
291
+ )
292
+ del masks
293
+
294
+ # Filter by predicted IoU
295
+ if self.pred_iou_thresh > 0.0:
296
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
297
+ data.filter(keep_mask)
298
+
299
+ # Calculate stability score
300
+ data["stability_score"] = calculate_stability_score(
301
+ data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
302
+ )
303
+ if self.stability_score_thresh > 0.0:
304
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
305
+ data.filter(keep_mask)
306
+
307
+ # Threshold masks and calculate boxes
308
+ data["masks"] = data["masks"] > self.predictor.model.mask_threshold
309
+ data["boxes"] = batched_mask_to_box(data["masks"])
310
+
311
+ # Filter boxes that touch crop boundaries
312
+ keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
313
+ if not torch.all(keep_mask):
314
+ data.filter(keep_mask)
315
+
316
+ # Compress to RLE
317
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
318
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
319
+ del data["masks"]
320
+
321
+ return data
322
+
323
+ @staticmethod
324
+ def postprocess_small_regions(
325
+ mask_data: MaskData, min_area: int, nms_thresh: float
326
+ ) -> MaskData:
327
+ """
328
+ Removes small disconnected regions and holes in masks, then reruns
329
+ box NMS to remove any new duplicates.
330
+
331
+ Edits mask_data in place.
332
+
333
+ Requires open-cv as a dependency.
334
+ """
335
+ if len(mask_data["rles"]) == 0:
336
+ return mask_data
337
+
338
+ # Filter small disconnected regions and holes
339
+ new_masks = []
340
+ scores = []
341
+ for rle in mask_data["rles"]:
342
+ mask = rle_to_mask(rle)
343
+
344
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
345
+ unchanged = not changed
346
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
347
+ unchanged = unchanged and not changed
348
+
349
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
350
+ # Give score=0 to changed masks and score=1 to unchanged masks
351
+ # so NMS will prefer ones that didn't need postprocessing
352
+ scores.append(float(unchanged))
353
+
354
+ # Recalculate boxes and remove any new duplicates
355
+ masks = torch.cat(new_masks, dim=0)
356
+ boxes = batched_mask_to_box(masks)
357
+ keep_by_nms = batched_nms(
358
+ boxes.float(),
359
+ torch.as_tensor(scores),
360
+ torch.zeros_like(boxes[:, 0]), # categories
361
+ iou_threshold=nms_thresh,
362
+ )
363
+
364
+ # Only recalculate RLEs for masks that have changed
365
+ for i_mask in keep_by_nms:
366
+ if scores[i_mask] == 0.0:
367
+ mask_torch = masks[i_mask].unsqueeze(0)
368
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
369
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
370
+ mask_data.filter(keep_by_nms)
371
+
372
+ return mask_data
per_segment_anything/build_sam.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+
9
+ from functools import partial
10
+
11
+ from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
12
+
13
+
14
+ def build_sam_vit_h(checkpoint=None):
15
+ return _build_sam(
16
+ encoder_embed_dim=1280,
17
+ encoder_depth=32,
18
+ encoder_num_heads=16,
19
+ encoder_global_attn_indexes=[7, 15, 23, 31],
20
+ checkpoint=checkpoint,
21
+ )
22
+
23
+
24
+ build_sam = build_sam_vit_h
25
+
26
+
27
+ def build_sam_vit_l(checkpoint=None):
28
+ return _build_sam(
29
+ encoder_embed_dim=1024,
30
+ encoder_depth=24,
31
+ encoder_num_heads=16,
32
+ encoder_global_attn_indexes=[5, 11, 17, 23],
33
+ checkpoint=checkpoint,
34
+ )
35
+
36
+
37
+ def build_sam_vit_b(checkpoint=None):
38
+ return _build_sam(
39
+ encoder_embed_dim=768,
40
+ encoder_depth=12,
41
+ encoder_num_heads=12,
42
+ encoder_global_attn_indexes=[2, 5, 8, 11],
43
+ checkpoint=checkpoint,
44
+ )
45
+
46
+
47
+ sam_model_registry = {
48
+ "default": build_sam_vit_h,
49
+ "vit_h": build_sam_vit_h,
50
+ "vit_l": build_sam_vit_l,
51
+ "vit_b": build_sam_vit_b,
52
+ }
53
+
54
+
55
+ def _build_sam(
56
+ encoder_embed_dim,
57
+ encoder_depth,
58
+ encoder_num_heads,
59
+ encoder_global_attn_indexes,
60
+ checkpoint=None,
61
+ ):
62
+ prompt_embed_dim = 256
63
+ image_size = 1024
64
+ vit_patch_size = 16
65
+ image_embedding_size = image_size // vit_patch_size
66
+ sam = Sam(
67
+ image_encoder=ImageEncoderViT(
68
+ depth=encoder_depth,
69
+ embed_dim=encoder_embed_dim,
70
+ img_size=image_size,
71
+ mlp_ratio=4,
72
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
73
+ num_heads=encoder_num_heads,
74
+ patch_size=vit_patch_size,
75
+ qkv_bias=True,
76
+ use_rel_pos=True,
77
+ global_attn_indexes=encoder_global_attn_indexes,
78
+ window_size=14,
79
+ out_chans=prompt_embed_dim,
80
+ ),
81
+ prompt_encoder=PromptEncoder(
82
+ embed_dim=prompt_embed_dim,
83
+ image_embedding_size=(image_embedding_size, image_embedding_size),
84
+ input_image_size=(image_size, image_size),
85
+ mask_in_chans=16,
86
+ ),
87
+ mask_decoder=MaskDecoder(
88
+ num_multimask_outputs=3,
89
+ transformer=TwoWayTransformer(
90
+ depth=2,
91
+ embedding_dim=prompt_embed_dim,
92
+ mlp_dim=2048,
93
+ num_heads=8,
94
+ ),
95
+ transformer_dim=prompt_embed_dim,
96
+ iou_head_depth=3,
97
+ iou_head_hidden_dim=256,
98
+ ),
99
+ pixel_mean=[123.675, 116.28, 103.53],
100
+ pixel_std=[58.395, 57.12, 57.375],
101
+ )
102
+ sam.eval()
103
+ if checkpoint is not None:
104
+ with open(checkpoint, "rb") as f:
105
+ state_dict = torch.load(f)
106
+ sam.load_state_dict(state_dict)
107
+ return sam
per_segment_anything/modeling/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .sam import Sam
8
+ from .image_encoder import ImageEncoderViT
9
+ from .mask_decoder import MaskDecoder
10
+ from .prompt_encoder import PromptEncoder
11
+ from .transformer import TwoWayTransformer
per_segment_anything/modeling/common.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+ from typing import Type
11
+
12
+
13
+ class MLPBlock(nn.Module):
14
+ def __init__(
15
+ self,
16
+ embedding_dim: int,
17
+ mlp_dim: int,
18
+ act: Type[nn.Module] = nn.GELU,
19
+ ) -> None:
20
+ super().__init__()
21
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
22
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
23
+ self.act = act()
24
+
25
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
26
+ return self.lin2(self.act(self.lin1(x)))
27
+
28
+
29
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
30
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
31
+ class LayerNorm2d(nn.Module):
32
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
33
+ super().__init__()
34
+ self.weight = nn.Parameter(torch.ones(num_channels))
35
+ self.bias = nn.Parameter(torch.zeros(num_channels))
36
+ self.eps = eps
37
+
38
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
+ u = x.mean(1, keepdim=True)
40
+ s = (x - u).pow(2).mean(1, keepdim=True)
41
+ x = (x - u) / torch.sqrt(s + self.eps)
42
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
43
+ return x
per_segment_anything/modeling/image_encoder.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from typing import Optional, Tuple, Type
12
+
13
+ from .common import LayerNorm2d, MLPBlock
14
+
15
+
16
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
17
+ class ImageEncoderViT(nn.Module):
18
+ def __init__(
19
+ self,
20
+ img_size: int = 1024,
21
+ patch_size: int = 16,
22
+ in_chans: int = 3,
23
+ embed_dim: int = 768,
24
+ depth: int = 12,
25
+ num_heads: int = 12,
26
+ mlp_ratio: float = 4.0,
27
+ out_chans: int = 256,
28
+ qkv_bias: bool = True,
29
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
30
+ act_layer: Type[nn.Module] = nn.GELU,
31
+ use_abs_pos: bool = True,
32
+ use_rel_pos: bool = False,
33
+ rel_pos_zero_init: bool = True,
34
+ window_size: int = 0,
35
+ global_attn_indexes: Tuple[int, ...] = (),
36
+ ) -> None:
37
+ """
38
+ Args:
39
+ img_size (int): Input image size.
40
+ patch_size (int): Patch size.
41
+ in_chans (int): Number of input image channels.
42
+ embed_dim (int): Patch embedding dimension.
43
+ depth (int): Depth of ViT.
44
+ num_heads (int): Number of attention heads in each ViT block.
45
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
46
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
47
+ norm_layer (nn.Module): Normalization layer.
48
+ act_layer (nn.Module): Activation layer.
49
+ use_abs_pos (bool): If True, use absolute positional embeddings.
50
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
51
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
52
+ window_size (int): Window size for window attention blocks.
53
+ global_attn_indexes (list): Indexes for blocks using global attention.
54
+ """
55
+ super().__init__()
56
+ self.img_size = img_size
57
+
58
+ self.patch_embed = PatchEmbed(
59
+ kernel_size=(patch_size, patch_size),
60
+ stride=(patch_size, patch_size),
61
+ in_chans=in_chans,
62
+ embed_dim=embed_dim,
63
+ )
64
+
65
+ self.pos_embed: Optional[nn.Parameter] = None
66
+ if use_abs_pos:
67
+ # Initialize absolute positional embedding with pretrain image size.
68
+ self.pos_embed = nn.Parameter(
69
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
70
+ )
71
+
72
+ self.blocks = nn.ModuleList()
73
+ for i in range(depth):
74
+ block = Block(
75
+ dim=embed_dim,
76
+ num_heads=num_heads,
77
+ mlp_ratio=mlp_ratio,
78
+ qkv_bias=qkv_bias,
79
+ norm_layer=norm_layer,
80
+ act_layer=act_layer,
81
+ use_rel_pos=use_rel_pos,
82
+ rel_pos_zero_init=rel_pos_zero_init,
83
+ window_size=window_size if i not in global_attn_indexes else 0,
84
+ input_size=(img_size // patch_size, img_size // patch_size),
85
+ )
86
+ self.blocks.append(block)
87
+
88
+ self.neck = nn.Sequential(
89
+ nn.Conv2d(
90
+ embed_dim,
91
+ out_chans,
92
+ kernel_size=1,
93
+ bias=False,
94
+ ),
95
+ LayerNorm2d(out_chans),
96
+ nn.Conv2d(
97
+ out_chans,
98
+ out_chans,
99
+ kernel_size=3,
100
+ padding=1,
101
+ bias=False,
102
+ ),
103
+ LayerNorm2d(out_chans),
104
+ )
105
+
106
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
107
+ x = self.patch_embed(x)
108
+ if self.pos_embed is not None:
109
+ x = x + self.pos_embed
110
+
111
+ for blk in self.blocks:
112
+ x = blk(x)
113
+
114
+ x = self.neck(x.permute(0, 3, 1, 2))
115
+
116
+ return x
117
+
118
+
119
+ class Block(nn.Module):
120
+ """Transformer blocks with support of window attention and residual propagation blocks"""
121
+
122
+ def __init__(
123
+ self,
124
+ dim: int,
125
+ num_heads: int,
126
+ mlp_ratio: float = 4.0,
127
+ qkv_bias: bool = True,
128
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
129
+ act_layer: Type[nn.Module] = nn.GELU,
130
+ use_rel_pos: bool = False,
131
+ rel_pos_zero_init: bool = True,
132
+ window_size: int = 0,
133
+ input_size: Optional[Tuple[int, int]] = None,
134
+ ) -> None:
135
+ """
136
+ Args:
137
+ dim (int): Number of input channels.
138
+ num_heads (int): Number of attention heads in each ViT block.
139
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
140
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
141
+ norm_layer (nn.Module): Normalization layer.
142
+ act_layer (nn.Module): Activation layer.
143
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
144
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
145
+ window_size (int): Window size for window attention blocks. If it equals 0, then
146
+ use global attention.
147
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
148
+ positional parameter size.
149
+ """
150
+ super().__init__()
151
+ self.norm1 = norm_layer(dim)
152
+ self.attn = Attention(
153
+ dim,
154
+ num_heads=num_heads,
155
+ qkv_bias=qkv_bias,
156
+ use_rel_pos=use_rel_pos,
157
+ rel_pos_zero_init=rel_pos_zero_init,
158
+ input_size=input_size if window_size == 0 else (window_size, window_size),
159
+ )
160
+
161
+ self.norm2 = norm_layer(dim)
162
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
163
+
164
+ self.window_size = window_size
165
+
166
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
167
+ shortcut = x
168
+ x = self.norm1(x)
169
+ # Window partition
170
+ if self.window_size > 0:
171
+ H, W = x.shape[1], x.shape[2]
172
+ x, pad_hw = window_partition(x, self.window_size)
173
+
174
+ x = self.attn(x)
175
+ # Reverse window partition
176
+ if self.window_size > 0:
177
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
178
+
179
+ x = shortcut + x
180
+ x = x + self.mlp(self.norm2(x))
181
+
182
+ return x
183
+
184
+
185
+ class Attention(nn.Module):
186
+ """Multi-head Attention block with relative position embeddings."""
187
+
188
+ def __init__(
189
+ self,
190
+ dim: int,
191
+ num_heads: int = 8,
192
+ qkv_bias: bool = True,
193
+ use_rel_pos: bool = False,
194
+ rel_pos_zero_init: bool = True,
195
+ input_size: Optional[Tuple[int, int]] = None,
196
+ ) -> None:
197
+ """
198
+ Args:
199
+ dim (int): Number of input channels.
200
+ num_heads (int): Number of attention heads.
201
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
202
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
203
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
204
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
205
+ positional parameter size.
206
+ """
207
+ super().__init__()
208
+ self.num_heads = num_heads
209
+ head_dim = dim // num_heads
210
+ self.scale = head_dim**-0.5
211
+
212
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
213
+ self.proj = nn.Linear(dim, dim)
214
+
215
+ self.use_rel_pos = use_rel_pos
216
+ if self.use_rel_pos:
217
+ assert (
218
+ input_size is not None
219
+ ), "Input size must be provided if using relative positional encoding."
220
+ # initialize relative positional embeddings
221
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
222
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
223
+
224
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
225
+ B, H, W, _ = x.shape
226
+ # qkv with shape (3, B, nHead, H * W, C)
227
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
228
+ # q, k, v with shape (B * nHead, H * W, C)
229
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
230
+
231
+ attn = (q * self.scale) @ k.transpose(-2, -1)
232
+
233
+ if self.use_rel_pos:
234
+ attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
235
+
236
+ attn = attn.softmax(dim=-1)
237
+ x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
238
+ x = self.proj(x)
239
+
240
+ return x
241
+
242
+
243
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
244
+ """
245
+ Partition into non-overlapping windows with padding if needed.
246
+ Args:
247
+ x (tensor): input tokens with [B, H, W, C].
248
+ window_size (int): window size.
249
+
250
+ Returns:
251
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
252
+ (Hp, Wp): padded height and width before partition
253
+ """
254
+ B, H, W, C = x.shape
255
+
256
+ pad_h = (window_size - H % window_size) % window_size
257
+ pad_w = (window_size - W % window_size) % window_size
258
+ if pad_h > 0 or pad_w > 0:
259
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
260
+ Hp, Wp = H + pad_h, W + pad_w
261
+
262
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
263
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
264
+ return windows, (Hp, Wp)
265
+
266
+
267
+ def window_unpartition(
268
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
269
+ ) -> torch.Tensor:
270
+ """
271
+ Window unpartition into original sequences and removing padding.
272
+ Args:
273
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
274
+ window_size (int): window size.
275
+ pad_hw (Tuple): padded height and width (Hp, Wp).
276
+ hw (Tuple): original height and width (H, W) before padding.
277
+
278
+ Returns:
279
+ x: unpartitioned sequences with [B, H, W, C].
280
+ """
281
+ Hp, Wp = pad_hw
282
+ H, W = hw
283
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
284
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
285
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
286
+
287
+ if Hp > H or Wp > W:
288
+ x = x[:, :H, :W, :].contiguous()
289
+ return x
290
+
291
+
292
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
293
+ """
294
+ Get relative positional embeddings according to the relative positions of
295
+ query and key sizes.
296
+ Args:
297
+ q_size (int): size of query q.
298
+ k_size (int): size of key k.
299
+ rel_pos (Tensor): relative position embeddings (L, C).
300
+
301
+ Returns:
302
+ Extracted positional embeddings according to relative positions.
303
+ """
304
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
305
+ # Interpolate rel pos if needed.
306
+ if rel_pos.shape[0] != max_rel_dist:
307
+ # Interpolate rel pos.
308
+ rel_pos_resized = F.interpolate(
309
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
310
+ size=max_rel_dist,
311
+ mode="linear",
312
+ )
313
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
314
+ else:
315
+ rel_pos_resized = rel_pos
316
+
317
+ # Scale the coords with short length if shapes for q and k are different.
318
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
319
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
320
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
321
+
322
+ return rel_pos_resized[relative_coords.long()]
323
+
324
+
325
+ def add_decomposed_rel_pos(
326
+ attn: torch.Tensor,
327
+ q: torch.Tensor,
328
+ rel_pos_h: torch.Tensor,
329
+ rel_pos_w: torch.Tensor,
330
+ q_size: Tuple[int, int],
331
+ k_size: Tuple[int, int],
332
+ ) -> torch.Tensor:
333
+ """
334
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
335
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
336
+ Args:
337
+ attn (Tensor): attention map.
338
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
339
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
340
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
341
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
342
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
343
+
344
+ Returns:
345
+ attn (Tensor): attention map with added relative positional embeddings.
346
+ """
347
+ q_h, q_w = q_size
348
+ k_h, k_w = k_size
349
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
350
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
351
+
352
+ B, _, dim = q.shape
353
+ r_q = q.reshape(B, q_h, q_w, dim)
354
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
355
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
356
+
357
+ attn = (
358
+ attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
359
+ ).view(B, q_h * q_w, k_h * k_w)
360
+
361
+ return attn
362
+
363
+
364
+ class PatchEmbed(nn.Module):
365
+ """
366
+ Image to Patch Embedding.
367
+ """
368
+
369
+ def __init__(
370
+ self,
371
+ kernel_size: Tuple[int, int] = (16, 16),
372
+ stride: Tuple[int, int] = (16, 16),
373
+ padding: Tuple[int, int] = (0, 0),
374
+ in_chans: int = 3,
375
+ embed_dim: int = 768,
376
+ ) -> None:
377
+ """
378
+ Args:
379
+ kernel_size (Tuple): kernel size of the projection layer.
380
+ stride (Tuple): stride of the projection layer.
381
+ padding (Tuple): padding size of the projection layer.
382
+ in_chans (int): Number of input image channels.
383
+ embed_dim (int): Patch embedding dimension.
384
+ """
385
+ super().__init__()
386
+
387
+ self.proj = nn.Conv2d(
388
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
389
+ )
390
+
391
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
392
+ x = self.proj(x)
393
+ # B C H W -> B H W C
394
+ x = x.permute(0, 2, 3, 1)
395
+ return x
per_segment_anything/modeling/mask_decoder.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+ from typing import List, Tuple, Type
12
+
13
+ from .common import LayerNorm2d
14
+
15
+
16
+ class MaskDecoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ *,
20
+ transformer_dim: int,
21
+ transformer: nn.Module,
22
+ num_multimask_outputs: int = 3,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ iou_head_depth: int = 3,
25
+ iou_head_hidden_dim: int = 256,
26
+ ) -> None:
27
+ """
28
+ Predicts masks given an image and prompt embeddings, using a
29
+ transformer architecture.
30
+
31
+ Arguments:
32
+ transformer_dim (int): the channel dimension of the transformer
33
+ transformer (nn.Module): the transformer used to predict masks
34
+ num_multimask_outputs (int): the number of masks to predict
35
+ when disambiguating masks
36
+ activation (nn.Module): the type of activation to use when
37
+ upscaling masks
38
+ iou_head_depth (int): the depth of the MLP used to predict
39
+ mask quality
40
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
41
+ used to predict mask quality
42
+ """
43
+ super().__init__()
44
+ self.transformer_dim = transformer_dim
45
+ self.transformer = transformer
46
+
47
+ self.num_multimask_outputs = num_multimask_outputs
48
+
49
+ self.iou_token = nn.Embedding(1, transformer_dim)
50
+ self.num_mask_tokens = num_multimask_outputs + 1
51
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
52
+
53
+ self.output_upscaling = nn.Sequential(
54
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
55
+ LayerNorm2d(transformer_dim // 4),
56
+ activation(),
57
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
58
+ activation(),
59
+ )
60
+ self.output_hypernetworks_mlps = nn.ModuleList(
61
+ [
62
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
63
+ for i in range(self.num_mask_tokens)
64
+ ]
65
+ )
66
+
67
+ self.iou_prediction_head = MLP(
68
+ transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
69
+ )
70
+
71
+ def forward(
72
+ self,
73
+ image_embeddings: torch.Tensor,
74
+ image_pe: torch.Tensor,
75
+ sparse_prompt_embeddings: torch.Tensor,
76
+ dense_prompt_embeddings: torch.Tensor,
77
+ multimask_output: bool,
78
+ attn_sim=None,
79
+ target_embedding=None
80
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
81
+ """
82
+ Predict masks given image and prompt embeddings.
83
+
84
+ Arguments:
85
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
86
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
87
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
88
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
89
+ multimask_output (bool): Whether to return multiple masks or a single
90
+ mask.
91
+
92
+ Returns:
93
+ torch.Tensor: batched predicted masks
94
+ torch.Tensor: batched predictions of mask quality
95
+ """
96
+ masks, iou_pred = self.predict_masks(
97
+ image_embeddings=image_embeddings,
98
+ image_pe=image_pe,
99
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
100
+ dense_prompt_embeddings=dense_prompt_embeddings,
101
+ attn_sim=attn_sim,
102
+ target_embedding=target_embedding
103
+ )
104
+
105
+ # Select the correct mask or masks for output
106
+ if multimask_output:
107
+ mask_slice = slice(1, None)
108
+ else:
109
+ mask_slice = slice(0, 1)
110
+ masks = masks[:, mask_slice, :, :]
111
+ iou_pred = iou_pred[:, mask_slice]
112
+
113
+ # Prepare output
114
+ return masks, iou_pred
115
+
116
+ def predict_masks(
117
+ self,
118
+ image_embeddings: torch.Tensor,
119
+ image_pe: torch.Tensor,
120
+ sparse_prompt_embeddings: torch.Tensor,
121
+ dense_prompt_embeddings: torch.Tensor,
122
+ attn_sim=None,
123
+ target_embedding=None
124
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
125
+ """Predicts masks. See 'forward' for more details."""
126
+ # Concatenate output tokens
127
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
128
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
129
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
130
+
131
+ # Expand per-image data in batch direction to be per-mask
132
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
133
+ src = src + dense_prompt_embeddings
134
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
135
+ b, c, h, w = src.shape
136
+
137
+ # Run the transformer
138
+ hs, src = self.transformer(src, pos_src, tokens, attn_sim, target_embedding)
139
+ iou_token_out = hs[:, 0, :]
140
+ mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
141
+
142
+ # Upscale mask embeddings and predict masks using the mask tokens
143
+ src = src.transpose(1, 2).view(b, c, h, w)
144
+ upscaled_embedding = self.output_upscaling(src)
145
+ hyper_in_list: List[torch.Tensor] = []
146
+ for i in range(self.num_mask_tokens):
147
+ hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
148
+ hyper_in = torch.stack(hyper_in_list, dim=1)
149
+ b, c, h, w = upscaled_embedding.shape
150
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
151
+
152
+ # Generate mask quality predictions
153
+ iou_pred = self.iou_prediction_head(iou_token_out)
154
+
155
+ return masks, iou_pred
156
+
157
+
158
+ # Lightly adapted from
159
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
160
+ class MLP(nn.Module):
161
+ def __init__(
162
+ self,
163
+ input_dim: int,
164
+ hidden_dim: int,
165
+ output_dim: int,
166
+ num_layers: int,
167
+ sigmoid_output: bool = False,
168
+ ) -> None:
169
+ super().__init__()
170
+ self.num_layers = num_layers
171
+ h = [hidden_dim] * (num_layers - 1)
172
+ self.layers = nn.ModuleList(
173
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
174
+ )
175
+ self.sigmoid_output = sigmoid_output
176
+
177
+ def forward(self, x):
178
+ for i, layer in enumerate(self.layers):
179
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
180
+ if self.sigmoid_output:
181
+ x = F.sigmoid(x)
182
+ return x
per_segment_anything/modeling/prompt_encoder.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torch import nn
10
+
11
+ from typing import Any, Optional, Tuple, Type
12
+
13
+ from .common import LayerNorm2d
14
+
15
+
16
+ class PromptEncoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ embed_dim: int,
20
+ image_embedding_size: Tuple[int, int],
21
+ input_image_size: Tuple[int, int],
22
+ mask_in_chans: int,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ ) -> None:
25
+ """
26
+ Encodes prompts for input to SAM's mask decoder.
27
+
28
+ Arguments:
29
+ embed_dim (int): The prompts' embedding dimension
30
+ image_embedding_size (tuple(int, int)): The spatial size of the
31
+ image embedding, as (H, W).
32
+ input_image_size (int): The padded size of the image as input
33
+ to the image encoder, as (H, W).
34
+ mask_in_chans (int): The number of hidden channels used for
35
+ encoding input masks.
36
+ activation (nn.Module): The activation to use when encoding
37
+ input masks.
38
+ """
39
+ super().__init__()
40
+ self.embed_dim = embed_dim
41
+ self.input_image_size = input_image_size
42
+ self.image_embedding_size = image_embedding_size
43
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
44
+
45
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
46
+ point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
47
+ self.point_embeddings = nn.ModuleList(point_embeddings)
48
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
49
+
50
+ self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
51
+ self.mask_downscaling = nn.Sequential(
52
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
53
+ LayerNorm2d(mask_in_chans // 4),
54
+ activation(),
55
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
56
+ LayerNorm2d(mask_in_chans),
57
+ activation(),
58
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
59
+ )
60
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
61
+
62
+ def get_dense_pe(self) -> torch.Tensor:
63
+ """
64
+ Returns the positional encoding used to encode point prompts,
65
+ applied to a dense set of points the shape of the image encoding.
66
+
67
+ Returns:
68
+ torch.Tensor: Positional encoding with shape
69
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
70
+ """
71
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
72
+
73
+ def _embed_points(
74
+ self,
75
+ points: torch.Tensor,
76
+ labels: torch.Tensor,
77
+ pad: bool,
78
+ ) -> torch.Tensor:
79
+ """Embeds point prompts."""
80
+ points = points + 0.5 # Shift to center of pixel
81
+ if pad:
82
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
83
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
84
+ points = torch.cat([points, padding_point], dim=1)
85
+ labels = torch.cat([labels, padding_label], dim=1)
86
+ point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
87
+ point_embedding[labels == -1] = 0.0
88
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
89
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
90
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
91
+ return point_embedding
92
+
93
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
94
+ """Embeds box prompts."""
95
+ boxes = boxes + 0.5 # Shift to center of pixel
96
+ coords = boxes.reshape(-1, 2, 2)
97
+ corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
98
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
99
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
100
+ return corner_embedding
101
+
102
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
103
+ """Embeds mask inputs."""
104
+ mask_embedding = self.mask_downscaling(masks)
105
+ return mask_embedding
106
+
107
+ def _get_batch_size(
108
+ self,
109
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
110
+ boxes: Optional[torch.Tensor],
111
+ masks: Optional[torch.Tensor],
112
+ ) -> int:
113
+ """
114
+ Gets the batch size of the output given the batch size of the input prompts.
115
+ """
116
+ if points is not None:
117
+ return points[0].shape[0]
118
+ elif boxes is not None:
119
+ return boxes.shape[0]
120
+ elif masks is not None:
121
+ return masks.shape[0]
122
+ else:
123
+ return 1
124
+
125
+ def _get_device(self) -> torch.device:
126
+ return self.point_embeddings[0].weight.device
127
+
128
+ def forward(
129
+ self,
130
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
131
+ boxes: Optional[torch.Tensor],
132
+ masks: Optional[torch.Tensor],
133
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
134
+ """
135
+ Embeds different types of prompts, returning both sparse and dense
136
+ embeddings.
137
+
138
+ Arguments:
139
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
140
+ and labels to embed.
141
+ boxes (torch.Tensor or none): boxes to embed
142
+ masks (torch.Tensor or none): masks to embed
143
+
144
+ Returns:
145
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
146
+ BxNx(embed_dim), where N is determined by the number of input points
147
+ and boxes.
148
+ torch.Tensor: dense embeddings for the masks, in the shape
149
+ Bx(embed_dim)x(embed_H)x(embed_W)
150
+ """
151
+ bs = self._get_batch_size(points, boxes, masks)
152
+ sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
153
+ if points is not None:
154
+ coords, labels = points
155
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
156
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
157
+ if boxes is not None:
158
+ box_embeddings = self._embed_boxes(boxes)
159
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
160
+
161
+ if masks is not None:
162
+ dense_embeddings = self._embed_masks(masks)
163
+ else:
164
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
165
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
166
+ )
167
+
168
+ return sparse_embeddings, dense_embeddings
169
+
170
+
171
+ class PositionEmbeddingRandom(nn.Module):
172
+ """
173
+ Positional encoding using random spatial frequencies.
174
+ """
175
+
176
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
177
+ super().__init__()
178
+ if scale is None or scale <= 0.0:
179
+ scale = 1.0
180
+ self.register_buffer(
181
+ "positional_encoding_gaussian_matrix",
182
+ scale * torch.randn((2, num_pos_feats)),
183
+ )
184
+
185
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
186
+ """Positionally encode points that are normalized to [0,1]."""
187
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
188
+ coords = 2 * coords - 1
189
+ coords = coords @ self.positional_encoding_gaussian_matrix
190
+ coords = 2 * np.pi * coords
191
+ # outputs d_1 x ... x d_n x C shape
192
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
193
+
194
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
195
+ """Generate positional encoding for a grid of the specified size."""
196
+ h, w = size
197
+ device: Any = self.positional_encoding_gaussian_matrix.device
198
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
199
+ y_embed = grid.cumsum(dim=0) - 0.5
200
+ x_embed = grid.cumsum(dim=1) - 0.5
201
+ y_embed = y_embed / h
202
+ x_embed = x_embed / w
203
+
204
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
205
+ return pe.permute(2, 0, 1) # C x H x W
206
+
207
+ def forward_with_coords(
208
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
209
+ ) -> torch.Tensor:
210
+ """Positionally encode points that are not normalized to [0,1]."""
211
+ coords = coords_input.clone()
212
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
213
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
214
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
per_segment_anything/modeling/sam.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
</