Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +208 -40
src/streamlit_app.py
CHANGED
@@ -1,40 +1,208 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
.
|
35 |
-
.
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import io # for creating in-memory binary streams
|
4 |
+
import wave # for writing WAV audio files
|
5 |
+
import re # for regular expression utilities
|
6 |
+
import streamlit as st # Streamlit UI library
|
7 |
+
from transformers import pipeline # Hugging Face inference pipelines
|
8 |
+
from PIL import Image # Python Imaging Library for image loading
|
9 |
+
import numpy as np # numerical operations, especially array handling
|
10 |
+
|
11 |
+
# 1) CACHE & LOAD MODELS
|
12 |
+
@st.cache_resource(show_spinner=False)
|
13 |
+
def load_captioner():
|
14 |
+
# Loads BLIP image-to-text model; cached so it loads only once.
|
15 |
+
# Returns: a function captioner(image: PIL.Image) -> List[Dict],
|
16 |
+
return pipeline(
|
17 |
+
"image-to-text",
|
18 |
+
model="Salesforce/blip-image-captioning-base",
|
19 |
+
device="cpu" # Can change to "cuda" if GPU is available
|
20 |
+
)
|
21 |
+
|
22 |
+
@st.cache_resource(show_spinner=False)
|
23 |
+
def load_story_pipe():
|
24 |
+
# Loads FLAN-T5 text-to-text model for story generation; cached once.
|
25 |
+
# Returns: a function story_pipe(prompt: str, **kwargs) -> List[Dict].
|
26 |
+
return pipeline(
|
27 |
+
"text2text-generation",
|
28 |
+
model="google/flan-t5-base",
|
29 |
+
device="cpu" # Can change to "cuda" if GPU is available
|
30 |
+
)
|
31 |
+
|
32 |
+
@st.cache_resource(show_spinner=False)
|
33 |
+
def load_tts_pipe():
|
34 |
+
# Loads Meta MMS-TTS text-to-speech model; cached once.
|
35 |
+
# Returns: a function tts_pipe(text: str) -> List[Dict] with "audio" and "sampling_rate".
|
36 |
+
return pipeline(
|
37 |
+
"text-to-speech",
|
38 |
+
model="facebook/mms-tts-eng",
|
39 |
+
device="cpu" # Can change to "cuda" if GPU is available
|
40 |
+
)
|
41 |
+
|
42 |
+
# 2) HELPER FUNCTIONS
|
43 |
+
def sentence_case(text: str) -> str:
|
44 |
+
# Splits text into sentences on .!? delimiters,
|
45 |
+
# capitalizes the first character of each sentence,
|
46 |
+
# then rejoins into a single string.
|
47 |
+
parts = re.split(r'([.!?])', text) # ["hello", ".", " world", "!"]
|
48 |
+
out = []
|
49 |
+
for i in range(0, len(parts) - 1, 2):
|
50 |
+
sentence = parts[i].strip().capitalize() # capitalize first letter
|
51 |
+
delimiter = parts[i + 1] # punctuation
|
52 |
+
# Ensure a space before the sentence if it wasn't the very first part
|
53 |
+
if out and not sentence.startswith(' ') and out[-1][-1] not in '.!?':
|
54 |
+
out.append(f" {sentence}{delimiter}")
|
55 |
+
else:
|
56 |
+
out.append(f"{sentence}{delimiter}")
|
57 |
+
|
58 |
+
# If trailing text without punctuation exists, capitalize and append it.
|
59 |
+
if len(parts) % 2:
|
60 |
+
last = parts[-1].strip().capitalize()
|
61 |
+
if last:
|
62 |
+
# Ensure a space before if needed
|
63 |
+
if out and not last.startswith(' ') and out[-1][-1] not in '.!?':
|
64 |
+
out.append(f" {last}")
|
65 |
+
else:
|
66 |
+
out.append(last)
|
67 |
+
|
68 |
+
# Clean up potential multiple spaces resulting from split/join
|
69 |
+
return " ".join(" ".join(out).split())
|
70 |
+
|
71 |
+
|
72 |
+
def caption_image(img: Image.Image, captioner) -> str:
|
73 |
+
# Given a PIL image and a captioner pipeline, returns a single-line caption.
|
74 |
+
results = captioner(img) # run model
|
75 |
+
if not results:
|
76 |
+
return ""
|
77 |
+
# extract "generated_text" field from first result
|
78 |
+
return results[0].get("generated_text", "")
|
79 |
+
|
80 |
+
def story_from_caption(caption: str, pipe) -> str:
|
81 |
+
# Given a caption string and a text2text pipeline, returns a ~100-word story.
|
82 |
+
prompt = f"Write a vivid, imaginative ~100-word story about this scene: {caption}"
|
83 |
+
results = pipe(
|
84 |
+
prompt,
|
85 |
+
max_length=120, # increased max length slightly
|
86 |
+
min_length=80, # minimum generated tokens
|
87 |
+
do_sample=True, # enable sampling
|
88 |
+
top_k=100, # sample from top_k tokens
|
89 |
+
top_p=0.9, # nucleus sampling threshold
|
90 |
+
temperature=0.7, # sampling temperature
|
91 |
+
repetition_penalty=1.1, # discourage repetition
|
92 |
+
no_repeat_ngram_size=4, # block repeated n-grams
|
93 |
+
early_stopping=False
|
94 |
+
)
|
95 |
+
raw = results[0]["generated_text"].strip() # full generated text
|
96 |
+
# strip out the prompt if it echoes back - make comparison case-insensitive
|
97 |
+
if raw.lower().startswith(prompt.lower()):
|
98 |
+
raw = raw[len(prompt):].strip()
|
99 |
+
|
100 |
+
# trim to last complete sentence ending in . ! or ?
|
101 |
+
match = re.search(r'[.!?]', raw[::-1]) # Search for the first punctuation from the end
|
102 |
+
if match:
|
103 |
+
raw = raw[:len(raw) - match.start()] # Trim at that position
|
104 |
+
elif len(raw) > 80: # If no punctuation found but story is long, trim to a reasonable length
|
105 |
+
raw = raw[:80] + "..."
|
106 |
+
|
107 |
+
return sentence_case(raw)
|
108 |
+
|
109 |
+
def tts_bytes(text: str, tts_pipe) -> bytes:
|
110 |
+
# Given a text string and a tts pipeline, returns WAV-format bytes.
|
111 |
+
# Clean up text for TTS - remove leading/trailing quotes, etc.
|
112 |
+
cleaned_text = re.sub(r'^["\']|["\']$', '', text).strip()
|
113 |
+
# Basic punctuation cleaning (optional, depending on TTS model)
|
114 |
+
cleaned_text = re.sub(r'\.{2,}', '.', cleaned_text) # Replace multiple periods with one
|
115 |
+
cleaned_text = cleaned_text.replace('…', '...') # Replace ellipsis char with dots
|
116 |
+
# Add a period if the text doesn't end with punctuation (helps TTS model finalize)
|
117 |
+
if cleaned_text and cleaned_text[-1] not in '.!?':
|
118 |
+
cleaned_text += '.'
|
119 |
+
|
120 |
+
output = tts_pipe(cleaned_text)
|
121 |
+
# pipeline may return list or single dict
|
122 |
+
result = output[0] if isinstance(output, list) else output
|
123 |
+
audio_array = result["audio"] # numpy array: (channels, samples) or (samples,)
|
124 |
+
rate = result["sampling_rate"] # sampling rate integer
|
125 |
+
|
126 |
+
# ensure audio_array is 2D (samples, channels) for consistent handling
|
127 |
+
if audio_array.ndim == 1:
|
128 |
+
data = audio_array[:, np.newaxis] # add channel dimension
|
129 |
+
else:
|
130 |
+
data = audio_array.T # transpose from (channels, samples) to (samples, channels)
|
131 |
+
|
132 |
+
|
133 |
+
# convert float32 [-1..1] to int16 PCM [-32768..32767]
|
134 |
+
pcm = (data * 32767).astype(np.int16)
|
135 |
+
|
136 |
+
buffer = io.BytesIO()
|
137 |
+
wf = wave.open(buffer, "wb")
|
138 |
+
wf.setnchannels(data.shape[1]) # number of channels
|
139 |
+
wf.setsampwidth(2) # 16 bits = 2 bytes
|
140 |
+
wf.setframerate(rate) # samples per second
|
141 |
+
wf.writeframes(pcm.tobytes()) # write PCM data
|
142 |
+
wf.close()
|
143 |
+
buffer.seek(0)
|
144 |
+
return buffer.read() # return raw WAV bytes
|
145 |
+
|
146 |
+
# 3) STREAMLIT USER INTERFACE
|
147 |
+
st.set_page_config(page_title="Imagine & Narrate", page_icon="✨", layout="centered")
|
148 |
+
st.title("✨ Imagine & Narrate")
|
149 |
+
st.write("Upload any image below to see AI imagine and narrate a story about it!")
|
150 |
+
|
151 |
+
# -- Upload image widget --
|
152 |
+
uploaded = st.file_uploader(
|
153 |
+
"Choose an image file",
|
154 |
+
type=["jpg", "jpeg", "png"]
|
155 |
+
)
|
156 |
+
if not uploaded:
|
157 |
+
st.info("➡️ Upload an image above to start the magic!")
|
158 |
+
st.stop()
|
159 |
+
|
160 |
+
# Load the uploaded file into a PIL Image
|
161 |
+
try:
|
162 |
+
img = Image.open(uploaded)
|
163 |
+
except Exception as e:
|
164 |
+
st.error(f"Error loading image: {e}")
|
165 |
+
st.stop()
|
166 |
+
|
167 |
+
|
168 |
+
# -- Step 1: Display the image --
|
169 |
+
st.subheader("📸 Your Visual Input")
|
170 |
+
st.image(img, use_container_width=True)
|
171 |
+
st.divider()
|
172 |
+
|
173 |
+
# -- Step 2: Generate and display caption --
|
174 |
+
st.subheader("🧠 Generating Insights")
|
175 |
+
with st.spinner("Scanning image for key elements…"):
|
176 |
+
captioner = load_captioner()
|
177 |
+
raw_caption = caption_image(img, captioner)
|
178 |
+
if not raw_caption:
|
179 |
+
st.warning("Could not generate a caption for the image.")
|
180 |
+
st.stop()
|
181 |
+
caption = sentence_case(raw_caption)
|
182 |
+
st.markdown(f"**Identified Scene:** {caption}")
|
183 |
+
st.divider()
|
184 |
+
|
185 |
+
# -- Step 3: Generate and display story --
|
186 |
+
st.subheader("📖 Crafting a Narrative")
|
187 |
+
with st.spinner("Writing a compelling story…"):
|
188 |
+
story_pipe = load_story_pipe()
|
189 |
+
story = story_from_caption(caption, story_pipe)
|
190 |
+
if not story or story.strip() == '...': # Check for empty or minimal story
|
191 |
+
st.warning("Could not generate a meaningful story from the caption.")
|
192 |
+
st.stop()
|
193 |
+
st.write(story)
|
194 |
+
st.divider()
|
195 |
+
|
196 |
+
# -- Step 4: Synthesize and play audio --
|
197 |
+
st.subheader("👂 Hear the Story")
|
198 |
+
with st.spinner("Synthesizing audio narration…"):
|
199 |
+
tts_pipe = load_tts_pipe()
|
200 |
+
try:
|
201 |
+
audio_bytes = tts_bytes(story, tts_pipe)
|
202 |
+
st.audio(audio_bytes, format="audio/wav")
|
203 |
+
except Exception as e:
|
204 |
+
st.error(f"Error generating audio: {e}")
|
205 |
+
|
206 |
+
|
207 |
+
# Celebration animation
|
208 |
+
st.balloons()
|