Spaces:
Runtime error
Runtime error
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch | |
import math | |
import paddle | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from .scheduling_utils import SchedulerMixin | |
class ScoreSdeVpScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
The variance preserving stochastic differential equation (SDE) scheduler. | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
For more information, see the original paper: https://arxiv.org/abs/2011.13456 | |
UNDER CONSTRUCTION | |
""" | |
order = 1 | |
def __init__(self, num_train_timesteps=2000, beta_min=0.1, beta_max=20, sampling_eps=1e-3): | |
self.sigmas = None | |
self.discrete_sigmas = None | |
self.timesteps = None | |
def set_timesteps(self, num_inference_steps): | |
self.timesteps = paddle.linspace(1, self.config.sampling_eps, num_inference_steps) | |
def step_pred(self, score, x, t, generator=None): | |
if self.timesteps is None: | |
raise ValueError( | |
"`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" | |
) | |
# TODO(Patrick) better comments + non-Paddle | |
# postprocess model score | |
log_mean_coeff = ( | |
-0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min | |
) | |
std = paddle.sqrt(1.0 - paddle.exp(2.0 * log_mean_coeff)) | |
std = std.flatten() | |
while len(std.shape) < len(score.shape): | |
std = std.unsqueeze(-1) | |
score = -score / std | |
# compute | |
dt = -1.0 / len(self.timesteps) | |
beta_t = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) | |
beta_t = beta_t.flatten() | |
while len(beta_t.shape) < len(x.shape): | |
beta_t = beta_t.unsqueeze(-1) | |
drift = -0.5 * beta_t * x | |
diffusion = paddle.sqrt(beta_t) | |
drift = drift - diffusion**2 * score | |
x_mean = x + drift * dt | |
# add noise | |
noise = paddle.randn(x.shape, generator=generator) | |
x = x_mean + diffusion * math.sqrt(-dt) * noise | |
return x, x_mean | |
def __len__(self): | |
return self.config.num_train_timesteps | |