lora_test2 / ppdiffusers /pipelines /latent_diffusion /pipeline_latent_diffusion.py
junnyu's picture
Upload with huggingface_hub
8c1c4dc
raw
history blame contribute delete
No virus
28.3 kB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, List, Optional, Union
import paddle
import paddle.nn as nn
################################################################################
# Code for the text transformer model
################################################################################
from paddlenlp.transformers import (
PretrainedModel,
PretrainedTokenizer,
register_base_model,
)
from paddlenlp.transformers.model_outputs import (
BaseModelOutputWithPoolingAndCrossAttentions,
)
from ...configuration_utils import FrozenDict
from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import deprecate, logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LDMBertPretrainedModel(PretrainedModel):
pretrained_init_configuration = {}
pretrained_resource_files_map = {}
base_model_prefix = "ldmbert"
def init_weights(self, layer):
if isinstance(layer, (nn.Linear, nn.Embedding)):
layer.weight.set_value(
paddle.normal(
mean=0.0,
std=self.initializer_range
if hasattr(self, "initializer_range")
else self.ldmbert.config["initializer_range"],
shape=layer.weight.shape,
)
)
class LDMBertEmbeddings(nn.Layer):
def __init__(self, vocab_size, hidden_size=768, hidden_dropout_prob=0.0, max_position_embeddings=512):
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, input_ids, position_ids=None):
if position_ids is None:
ones = paddle.ones_like(input_ids, dtype="int64")
seq_length = paddle.cumsum(ones, axis=-1)
position_ids = seq_length - ones
position_ids.stop_gradient = True
input_embedings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = input_embedings + position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
class TransformerEncoderLayer(nn.TransformerEncoderLayer):
def __init__(
self,
d_model,
nhead,
dim_feedforward,
dropout=0.1,
activation="gelu",
attn_dropout=None,
act_dropout=None,
normalize_before=False,
weight_attr=None,
bias_attr=None,
head_dim=64,
):
super().__init__(
d_model,
nhead,
dim_feedforward,
dropout,
activation,
attn_dropout,
act_dropout,
normalize_before,
weight_attr,
bias_attr,
)
# update self attn
self.self_attn = LDMBertAttention(
d_model, head_dim, nhead, dropout=attn_dropout, weight_attr=weight_attr, bias_attr=False
)
@register_base_model
class LDMBertModel(LDMBertPretrainedModel):
_no_split_modules = []
def __init__(
self,
vocab_size=30522,
max_position_embeddings=77,
encoder_layers=32,
encoder_ffn_dim=5120,
encoder_attention_heads=8,
head_dim=64,
activation_function="gelu",
d_model=1280,
dropout=0.0,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
pad_token_id=0,
**kwargs
):
super().__init__()
self.pad_token_id = pad_token_id
self.initializer_range = init_std
self.embeddings = LDMBertEmbeddings(vocab_size, d_model, dropout, max_position_embeddings)
encoder_layer = TransformerEncoderLayer(
d_model,
encoder_attention_heads,
encoder_ffn_dim,
dropout=dropout,
activation=activation_function,
attn_dropout=attention_dropout,
act_dropout=activation_dropout,
normalize_before=True,
head_dim=head_dim,
)
self.encoder = nn.TransformerEncoder(encoder_layer, encoder_layers)
self.final_layer_norm = nn.LayerNorm(d_model)
self.apply(self.init_weights)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids,
position_ids=None,
attention_mask=None,
output_hidden_states=False,
output_attentions=False,
return_dict=False,
):
if attention_mask is not None and attention_mask.ndim == 2:
# attention_mask [batch_size, sequence_length] -> [batch_size, 1, 1, sequence_length]
attention_mask = attention_mask.unsqueeze(axis=[1, 2]).astype(paddle.get_default_dtype())
attention_mask = (1.0 - attention_mask) * -1e4
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids)
encoder_outputs = self.encoder(
embedding_output,
src_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if isinstance(encoder_outputs, type(embedding_output)):
sequence_output = self.final_layer_norm(encoder_outputs)
return (sequence_output,)
else:
sequence_output = encoder_outputs[0]
sequence_output = self.final_layer_norm(sequence_output)
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class LDMBertAttention(nn.MultiHeadAttention):
def __init__(
self,
embed_dim,
head_dim,
num_heads,
dropout=0.0,
kdim=None,
vdim=None,
need_weights=False,
weight_attr=None,
bias_attr=None,
):
super().__init__(embed_dim, num_heads, dropout, kdim, vdim, need_weights, weight_attr, bias_attr)
assert embed_dim > 0, "Expected embed_dim to be greater than 0, " "but recieved {}".format(embed_dim)
assert num_heads > 0, "Expected num_heads to be greater than 0, " "but recieved {}".format(num_heads)
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.need_weights = need_weights
self.head_dim = head_dim
self.inner_dim = head_dim * num_heads
self.scaling = self.head_dim**-0.5
self.q_proj = nn.Linear(embed_dim, self.inner_dim, weight_attr, bias_attr=bias_attr)
self.k_proj = nn.Linear(self.kdim, self.inner_dim, weight_attr, bias_attr=bias_attr)
self.v_proj = nn.Linear(self.vdim, self.inner_dim, weight_attr, bias_attr=bias_attr)
self.out_proj = nn.Linear(self.inner_dim, embed_dim, weight_attr)
class LDMBertModelForMaskedLM(LDMBertPretrainedModel):
def __init__(self, ldmbert):
super().__init__()
self.ldmbert = ldmbert
self.to_logits = nn.Linear(ldmbert.config["hidden_size"], ldmbert.config["vocab_size"])
self.apply(self.init_weights)
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
outputs = self.ldmbert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return outputs
class LDMTextToImagePipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)
Parameters:
vqvae ([`VQModel`]):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
bert ([`LDMBertModel`]):
Text-encoder model based on [BERT](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.modeling.html#paddlenlp.transformers.bert.modeling.BertModel) architecture.
tokenizer (`paddlenlp.transformers.BertTokenizer`):
Tokenizer of class
[BertTokenizer](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.tokenizer.html#paddlenlp.transformers.bert.tokenizer.BertTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`]
or [`DPMSolverMultistepScheduler`].
"""
def __init__(
self,
vqvae: Union[VQModel, AutoencoderKL],
bert: PretrainedModel,
tokenizer: PretrainedTokenizer,
unet: Union[UNet2DModel, UNet2DConditionModel],
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1)
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `list(int)`):
prompt to be encoded
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
"""
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pd",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because LDMBert can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_embeddings = self.bert(text_input_ids)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1])
text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1])
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pd",
)
uncond_embeddings = self.bert(uncond_input.input_ids)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1])
uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1])
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = paddle.concat([uncond_embeddings, text_embeddings])
return text_embeddings
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
image = self.vqvae.decode(latents).sample
image = (image / 2 + 0.5).clip(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor]
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
if isinstance(generator, list):
shape = [
1,
] + shape[1:]
latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)]
latents = paddle.concat(latents, axis=0)
else:
latents = paddle.randn(shape, generator=generator, dtype=dtype)
else:
if latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@paddle.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
height: int = 256,
width: int = 256,
num_inference_steps: int = 50,
guidance_scale: float = 1.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
latents: Optional[paddle.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
callback_steps: Optional[int] = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to 256:
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 256:
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 1.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`paddle.Generator`, *optional*):
One or a list of paddle generator(s) to make generation deterministic.
latents (`paddle.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_embeddings = self._encode_prompt(
prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)