Spaces:
Runtime error
Runtime error
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from dataclasses import dataclass | |
from typing import Optional | |
import paddle | |
import paddle.nn.functional as F | |
from paddle import nn | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..modeling_utils import ModelMixin | |
from ..models.embeddings import ImagePositionalEmbeddings | |
from ..utils import BaseOutput | |
from .cross_attention import CrossAttention | |
class Transformer2DModelOutput(BaseOutput): | |
""" | |
Args: | |
sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions | |
for the unnoised latent pixels. | |
""" | |
sample: paddle.Tensor | |
class Transformer2DModel(ModelMixin, ConfigMixin): | |
""" | |
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual | |
embeddings) inputs. | |
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard | |
transformer action. Finally, reshape to image. | |
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional | |
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict | |
classes of unnoised image. | |
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised | |
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
Pass if the input is continuous. The number of channels in the input and output. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. | |
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. | |
Note that this is fixed at training time as it is used for learning a number of position embeddings. See | |
`ImagePositionalEmbeddings`. | |
num_vector_embeds (`int`, *optional*): | |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. | |
The number of diffusion steps used during training. Note that this is fixed at training time as it is used | |
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for | |
up to but not more than steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the TransformerBlocks' attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
self.inner_dim = inner_dim = num_attention_heads * attention_head_dim | |
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
# Define whether input is continuous or discrete depending on configuration | |
self.is_input_continuous = in_channels is not None | |
self.is_input_vectorized = num_vector_embeds is not None | |
if self.is_input_continuous and self.is_input_vectorized: | |
raise ValueError( | |
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" | |
" sure that either `in_channels` or `num_vector_embeds` is None." | |
) | |
elif not self.is_input_continuous and not self.is_input_vectorized: | |
raise ValueError( | |
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make" | |
" sure that either `in_channels` or `num_vector_embeds` is not None." | |
) | |
# 2. Define input layers | |
if self.is_input_continuous: | |
self.in_channels = in_channels | |
self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, epsilon=1e-6) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2D(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" | |
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" | |
self.height = sample_size | |
self.width = sample_size | |
self.num_vector_embeds = num_vector_embeds | |
self.num_latent_pixels = self.height * self.width | |
self.latent_image_embedding = ImagePositionalEmbeddings( | |
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width | |
) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.LayerList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if self.is_input_continuous: | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2D(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
self.norm_out = nn.LayerNorm(inner_dim) | |
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
cross_attention_kwargs=None, | |
return_dict: bool = True, | |
): | |
""" | |
Args: | |
hidden_states ( When discrete, `paddle.Tensor` of shape `(batch size, num latent pixels)`. | |
When continous, `paddle.Tensor` of shape `(batch size, channel, height, width)`): Input | |
hidden_states | |
encoder_hidden_states ( `paddle.Tensor` of shape `(batch size, encoder_hidden_states)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `paddle.Tensor`, *optional*): | |
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`] | |
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample | |
tensor. | |
""" | |
# 1. Input | |
if self.is_input_continuous: | |
_, _, height, width = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = hidden_states.transpose([0, 2, 3, 1]).flatten(1, 2) | |
if self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
elif self.is_input_vectorized: | |
hidden_states = self.latent_image_embedding(hidden_states.cast("int64")) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
# 3. Output | |
if self.is_input_continuous: | |
if self.use_linear_projection: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape([-1, height, width, self.inner_dim]).transpose([0, 3, 1, 2]) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_out(hidden_states) | |
output = hidden_states + residual | |
elif self.is_input_vectorized: | |
hidden_states = self.norm_out(hidden_states) | |
logits = self.out(hidden_states) | |
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels) | |
logits = logits.transpose([0, 2, 1]) | |
# log(p(x_0)) | |
output = F.log_softmax(logits.cast("float64"), axis=1).cast("float32") | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |
class AttentionBlock(nn.Layer): | |
""" | |
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted | |
to the N-d case. | |
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. | |
Uses three q, k, v linear layers to compute attention. | |
Parameters: | |
channels (`int`): The number of channels in the input and output. | |
num_head_channels (`int`, *optional*): | |
The number of channels in each head. If None, then `num_heads` = 1. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm. | |
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by. | |
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. | |
""" | |
def __init__( | |
self, | |
channels: int, | |
num_head_channels: Optional[int] = None, | |
norm_num_groups: int = 32, | |
rescale_output_factor: float = 1.0, | |
eps: float = 1e-5, | |
): | |
super().__init__() | |
self.channels = channels | |
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 | |
self.head_dim = self.channels // self.num_heads | |
self.scale = 1 / math.sqrt(self.channels / self.num_heads) | |
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, epsilon=eps) | |
# define q,k,v as linear layers | |
self.query = nn.Linear(channels, channels) | |
self.key = nn.Linear(channels, channels) | |
self.value = nn.Linear(channels, channels) | |
self.rescale_output_factor = rescale_output_factor | |
self.proj_attn = nn.Linear(channels, channels) | |
def reshape_heads_to_batch_dim(self, tensor): | |
tensor = tensor.reshape([0, 0, self.num_heads, self.head_dim]) | |
tensor = tensor.transpose([0, 2, 1, 3]) | |
return tensor | |
def reshape_batch_dim_to_heads(self, tensor): | |
tensor = tensor.transpose([0, 2, 1, 3]) | |
tensor = tensor.reshape([0, 0, tensor.shape[2] * tensor.shape[3]]) | |
return tensor | |
def forward(self, hidden_states): | |
residual = hidden_states | |
batch, channel, height, width = hidden_states.shape | |
# norm | |
hidden_states = self.group_norm(hidden_states) | |
hidden_states = hidden_states.reshape([batch, channel, height * width]).transpose([0, 2, 1]) | |
# proj to q, k, v | |
query_proj = self.query(hidden_states) | |
key_proj = self.key(hidden_states) | |
value_proj = self.value(hidden_states) | |
query_proj = self.reshape_heads_to_batch_dim(query_proj) | |
key_proj = self.reshape_heads_to_batch_dim(key_proj) | |
value_proj = self.reshape_heads_to_batch_dim(value_proj) | |
# get scores | |
attention_scores = paddle.matmul(query_proj, key_proj, transpose_y=True) * self.scale | |
attention_probs = F.softmax(attention_scores.cast("float32"), axis=-1).cast(attention_scores.dtype) | |
# compute attention output | |
hidden_states = paddle.matmul(attention_probs, value_proj) | |
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
# compute next hidden_states | |
hidden_states = self.proj_attn(hidden_states) | |
hidden_states = hidden_states.transpose([0, 2, 1]).reshape([batch, channel, height, width]) | |
# res connect and rescale | |
hidden_states = (hidden_states + residual) / self.rescale_output_factor | |
return hidden_states | |
class BasicTransformerBlock(nn.Layer): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
# 1. Self-Attn | |
self.attn1 = CrossAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.attn2 = None | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
if cross_attention_dim is not None: | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
else: | |
self.norm2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
timestep=None, | |
attention_mask=None, | |
cross_attention_kwargs=None, | |
): | |
# 1. Self-Attention | |
norm_hidden_states = ( | |
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
if self.attn2 is not None: | |
# 2. Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
return hidden_states | |
class FeedForward(nn.Layer): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
self.net = nn.LayerList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out)) | |
def forward(self, hidden_states): | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class GELU(nn.Layer): | |
r""" | |
GELU activation function | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states = F.gelu(hidden_states) | |
return hidden_states | |
# feedforward | |
class GEGLU(nn.Layer): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, hidden_states): | |
hidden_states, gate = self.proj(hidden_states).chunk(2, axis=-1) | |
return hidden_states * F.gelu(gate) | |
class ApproximateGELU(nn.Layer): | |
""" | |
The approximate form of Gaussian Error Linear Unit (GELU) | |
For more details, see section 2: https://arxiv.org/abs/1606.08415 | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def forward(self, x): | |
x = self.proj(x) | |
return x * F.sigmoid(1.702 * x) | |
class AdaLayerNorm(nn.Layer): | |
""" | |
Norm layer modified to incorporate timestep embeddings. | |
""" | |
def __init__(self, embedding_dim, num_embeddings): | |
super().__init__() | |
self.emb = nn.Embedding(num_embeddings, embedding_dim) | |
self.silu = nn.Silu() | |
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) | |
self.norm = nn.LayerNorm(embedding_dim) # elementwise_affine=False | |
def forward(self, x, timestep): | |
emb = self.linear(self.silu(self.emb(timestep))) | |
scale, shift = paddle.chunk(emb, 2, axis=-1) | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class DualTransformer2DModel(nn.Layer): | |
""" | |
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
Pass if the input is continuous. The number of channels in the input and output. | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. | |
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. | |
Note that this is fixed at training time as it is used for learning a number of position embeddings. See | |
`ImagePositionalEmbeddings`. | |
num_vector_embeds (`int`, *optional*): | |
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. | |
The number of diffusion steps used during training. Note that this is fixed at training time as it is used | |
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for | |
up to but not more than steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the TransformerBlocks' attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
): | |
super().__init__() | |
self.transformers = nn.LayerList( | |
[ | |
Transformer2DModel( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
in_channels=in_channels, | |
num_layers=num_layers, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attention_bias=attention_bias, | |
sample_size=sample_size, | |
num_vector_embeds=num_vector_embeds, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
) | |
for _ in range(2) | |
] | |
) | |
# Variables that can be set by a pipeline: | |
# The ratio of transformer1 to transformer2's output states to be combined during inference | |
self.mix_ratio = 0.5 | |
# The shape of `encoder_hidden_states` is expected to be | |
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` | |
self.condition_lengths = [77, 257] | |
# Which transformer to use to encode which condition. | |
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` | |
self.transformer_index_for_condition = [1, 0] | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states, | |
timestep=None, | |
attention_mask=None, | |
cross_attention_kwargs=None, | |
return_dict: bool = True, | |
): | |
""" | |
Args: | |
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. | |
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input | |
hidden_states | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.long`, *optional*): | |
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. | |
attention_mask (`torch.FloatTensor`, *optional*): | |
Optional attention mask to be applied in CrossAttention | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`] | |
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample | |
tensor. | |
""" | |
input_states = hidden_states | |
encoded_states = [] | |
tokens_start = 0 | |
# attention_mask is not used yet | |
for i in range(2): | |
# for each of the two transformers, pass the corresponding condition tokens | |
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] | |
transformer_index = self.transformer_index_for_condition[i] | |
encoded_state = self.transformers[transformer_index]( | |
input_states, | |
encoder_hidden_states=condition_state, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
encoded_states.append(encoded_state - input_states) | |
tokens_start += self.condition_lengths[i] | |
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) | |
output_states = output_states + input_states | |
if not return_dict: | |
return (output_states,) | |
return Transformer2DModelOutput(sample=output_states) | |