Spaces:
Sleeping
Sleeping
Syed Junaid Iqbal
commited on
Commit
β’
d6bdb65
1
Parent(s):
787200f
Update app.py
Browse files
app.py
CHANGED
@@ -7,25 +7,54 @@ from langchain.vectorstores import Chroma
|
|
7 |
from langchain.callbacks.manager import CallbackManager
|
8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
9 |
from langchain import hub
|
|
|
10 |
|
11 |
def init_retriever():
|
12 |
"""
|
13 |
Initialize and return the retriever function
|
14 |
"""
|
15 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
16 |
-
llm = LlamaCpp(model_path="
|
|
|
17 |
n_ctx=4000,
|
18 |
max_tokens=4000,
|
19 |
-
|
|
|
20 |
callback_manager=callback_manager,
|
21 |
verbose=True)
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
qa_chain = RetrievalQA.from_chain_type(
|
26 |
llm,
|
27 |
retriever=db.as_retriever(),
|
28 |
-
chain_type_kwargs={"prompt":
|
29 |
)
|
30 |
qa_chain.callback_manager = callback_manager
|
31 |
qa_chain.memory = ConversationBufferMemory()
|
|
|
7 |
from langchain.callbacks.manager import CallbackManager
|
8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
9 |
from langchain import hub
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
|
12 |
def init_retriever():
|
13 |
"""
|
14 |
Initialize and return the retriever function
|
15 |
"""
|
16 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
17 |
+
llm = LlamaCpp(model_path="/content/models/llama-2-13b-chat.Q4_K_S.gguf",
|
18 |
+
template = 0.4,
|
19 |
n_ctx=4000,
|
20 |
max_tokens=4000,
|
21 |
+
n_gpu_layers = 50,
|
22 |
+
n_batch = 512,
|
23 |
callback_manager=callback_manager,
|
24 |
verbose=True)
|
25 |
+
|
26 |
+
embeddings = FastEmbedEmbeddings(model_name="BAAI/bge-small-en-v1.5", cache_dir="/content/embeddings/")
|
27 |
+
db = Chroma(persist_directory="/content/vectordb/", embedding_function=embeddings)
|
28 |
+
|
29 |
+
# prompt template π
|
30 |
+
template = """
|
31 |
+
You are a Experience human Resource Manager. When the employee asks you a question, you will have to refer the company policy and respond in a professional way. Make sure to sound Empethetic while being professional and sound like a Human!
|
32 |
+
|
33 |
+
Try to summarise the content and keep the answer to the point.
|
34 |
+
|
35 |
+
|
36 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
37 |
+
|
38 |
+
When generating answer for the given question make sure to follow the example template!
|
39 |
+
|
40 |
+
Example:
|
41 |
+
Question : how many paid leaves do i have ?
|
42 |
+
Answer : The number of paid leaves varies depending on the type of leave, like privilege leave you're entitled to a maximum of 21 days in a calendar year. Other leaves might have different entitlements. thanks for asking!
|
43 |
+
|
44 |
+
make sure to add "thanks for asking!" after every answer
|
45 |
+
|
46 |
+
{context}
|
47 |
+
Question: {question}
|
48 |
+
Answer:
|
49 |
+
"""
|
50 |
+
|
51 |
+
rag_prompt_custom = PromptTemplate.from_template(template)
|
52 |
+
|
53 |
+
|
54 |
qa_chain = RetrievalQA.from_chain_type(
|
55 |
llm,
|
56 |
retriever=db.as_retriever(),
|
57 |
+
chain_type_kwargs={"prompt": rag_prompt_custom},
|
58 |
)
|
59 |
qa_chain.callback_manager = callback_manager
|
60 |
qa_chain.memory = ConversationBufferMemory()
|