Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,144 +1,82 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
-
from transformers import BitsAndBytesConfig
|
6 |
import os
|
7 |
|
8 |
def initialize_model():
|
9 |
-
"""Initialize
|
10 |
-
#
|
11 |
-
|
12 |
-
if token:
|
13 |
-
login(token)
|
14 |
-
|
15 |
-
model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
16 |
-
|
17 |
-
# Load tokenizer
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
|
20 |
try:
|
21 |
-
#
|
22 |
-
|
23 |
-
|
|
|
24 |
device_map="cpu",
|
25 |
-
|
26 |
-
low_cpu_mem_usage=True
|
27 |
)
|
|
|
|
|
|
|
28 |
except Exception as e:
|
29 |
print(f"Error loading model: {str(e)}")
|
30 |
raise e
|
31 |
|
32 |
-
|
33 |
-
if tokenizer.pad_token is None:
|
34 |
-
tokenizer.pad_token = tokenizer.eos_token
|
35 |
-
|
36 |
-
return model, tokenizer
|
37 |
-
|
38 |
-
def format_prompt(user_input, conversation_history=[]):
|
39 |
-
"""Format the prompt according to TinyLlama's expected chat format"""
|
40 |
-
messages = []
|
41 |
-
|
42 |
-
# Add conversation history
|
43 |
-
for turn in conversation_history:
|
44 |
-
messages.append({"role": "user", "content": turn["user"]})
|
45 |
-
messages.append({"role": "assistant", "content": turn["assistant"]})
|
46 |
-
|
47 |
-
# Add current user input
|
48 |
-
messages.append({"role": "user", "content": user_input})
|
49 |
-
|
50 |
-
# Format into TinyLlama chat format
|
51 |
-
formatted_prompt = "<|system|>You are a helpful AI assistant.</s>"
|
52 |
-
|
53 |
-
for message in messages:
|
54 |
-
if message["role"] == "user":
|
55 |
-
formatted_prompt += f"<|user|>{message['content']}</s>"
|
56 |
-
else:
|
57 |
-
formatted_prompt += f"<|assistant|>{message['content']}</s>"
|
58 |
-
|
59 |
-
formatted_prompt += "<|assistant|>"
|
60 |
-
return formatted_prompt
|
61 |
-
|
62 |
-
def generate_response(model, tokenizer, prompt, conversation_history):
|
63 |
"""Generate model response"""
|
64 |
try:
|
65 |
-
# Format
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# Calculate max new tokens
|
76 |
-
input_length = inputs["input_ids"].shape[1]
|
77 |
-
max_model_length = 1024
|
78 |
-
max_new_tokens = min(150, max_model_length - input_length)
|
79 |
-
|
80 |
-
# Generate response
|
81 |
-
outputs = model.generate(
|
82 |
-
inputs["input_ids"],
|
83 |
-
attention_mask=inputs["attention_mask"],
|
84 |
-
max_new_tokens=max_new_tokens,
|
85 |
temperature=0.7,
|
86 |
top_p=0.9,
|
87 |
-
|
88 |
do_sample=True,
|
89 |
-
|
90 |
-
|
91 |
-
eos_token_id=tokenizer.encode("</s>")[0] # Set end token
|
92 |
-
)
|
93 |
-
|
94 |
-
# Decode response and extract only the assistant's message
|
95 |
-
full_response = tokenizer.decode(outputs[0], skip_special_tokens=False)
|
96 |
|
97 |
-
# Extract only the
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
except
|
103 |
-
|
104 |
-
torch.cuda.empty_cache()
|
105 |
-
return "I apologize, but I ran out of memory. Please try a shorter message or clear the chat history."
|
106 |
-
else:
|
107 |
-
return f"An error occurred: {str(e)}"
|
108 |
|
109 |
def main():
|
110 |
-
st.set_page_config(
|
111 |
-
page_title="LLM Chat Interface",
|
112 |
-
page_icon="🤖",
|
113 |
-
layout="wide"
|
114 |
-
)
|
115 |
|
116 |
-
|
117 |
-
st.markdown("""
|
118 |
-
<style>
|
119 |
-
.stChat {
|
120 |
-
padding-top: 0rem;
|
121 |
-
}
|
122 |
-
.stChatMessage {
|
123 |
-
padding: 0.5rem;
|
124 |
-
}
|
125 |
-
</style>
|
126 |
-
""", unsafe_allow_html=True)
|
127 |
-
|
128 |
-
st.title("Chat with TinyLlama 🤖")
|
129 |
|
130 |
-
# Initialize session state
|
131 |
if "chat_history" not in st.session_state:
|
132 |
st.session_state.chat_history = []
|
|
|
|
|
|
|
133 |
|
134 |
# Initialize model (only once)
|
135 |
-
if
|
136 |
-
with st.spinner("Loading the model...
|
137 |
try:
|
138 |
-
|
139 |
-
st.session_state.
|
140 |
st.session_state.tokenizer = tokenizer
|
141 |
-
st.
|
142 |
except Exception as e:
|
143 |
st.error(f"Error loading model: {str(e)}")
|
144 |
return
|
@@ -151,7 +89,7 @@ def main():
|
|
151 |
st.write(message["assistant"])
|
152 |
|
153 |
# Chat input
|
154 |
-
if prompt := st.chat_input("
|
155 |
# Display user message
|
156 |
with st.chat_message("user"):
|
157 |
st.write(prompt)
|
@@ -163,7 +101,7 @@ def main():
|
|
163 |
st.session_state.chat_history.append(current_turn)
|
164 |
|
165 |
response = generate_response(
|
166 |
-
st.session_state.
|
167 |
st.session_state.tokenizer,
|
168 |
prompt,
|
169 |
st.session_state.chat_history
|
@@ -172,23 +110,22 @@ def main():
|
|
172 |
st.write(response)
|
173 |
st.session_state.chat_history[-1]["assistant"] = response
|
174 |
|
175 |
-
#
|
176 |
if len(st.session_state.chat_history) > 5:
|
177 |
st.session_state.chat_history = st.session_state.chat_history[-5:]
|
178 |
|
179 |
-
# Sidebar
|
180 |
with st.sidebar:
|
181 |
-
st.title("Controls")
|
182 |
if st.button("Clear Chat"):
|
183 |
st.session_state.chat_history = []
|
184 |
st.rerun()
|
185 |
|
186 |
st.markdown("---")
|
187 |
st.markdown("""
|
188 |
-
###
|
189 |
-
- Using
|
190 |
-
-
|
191 |
-
-
|
192 |
""")
|
193 |
|
194 |
if __name__ == "__main__":
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
3 |
import torch
|
|
|
4 |
import os
|
5 |
|
6 |
def initialize_model():
|
7 |
+
"""Initialize a small and fast model for CPU"""
|
8 |
+
# Using a tiny model optimized for CPU
|
9 |
+
model_id = "facebook/opt-125m" # Much smaller model (125M parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
try:
|
12 |
+
# Initialize the pipeline directly - more efficient than loading model separately
|
13 |
+
pipe = pipeline(
|
14 |
+
"text-generation",
|
15 |
+
model=model_id,
|
16 |
device_map="cpu",
|
17 |
+
model_kwargs={"low_cpu_mem_usage": True}
|
|
|
18 |
)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
+
|
21 |
+
return pipe, tokenizer
|
22 |
except Exception as e:
|
23 |
print(f"Error loading model: {str(e)}")
|
24 |
raise e
|
25 |
|
26 |
+
def generate_response(pipe, tokenizer, prompt, conversation_history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"""Generate model response"""
|
28 |
try:
|
29 |
+
# Format conversation context
|
30 |
+
context = ""
|
31 |
+
for turn in conversation_history[-3:]: # Only use last 3 turns for efficiency
|
32 |
+
context += f"Human: {turn['user']}\nAssistant: {turn['assistant']}\n"
|
33 |
|
34 |
+
# Create the full prompt
|
35 |
+
full_prompt = f"{context}Human: {prompt}\nAssistant:"
|
36 |
|
37 |
+
# Generate response with conservative parameters
|
38 |
+
response = pipe(
|
39 |
+
full_prompt,
|
40 |
+
max_new_tokens=50, # Limit response length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
temperature=0.7,
|
42 |
top_p=0.9,
|
43 |
+
num_return_sequences=1,
|
44 |
do_sample=True,
|
45 |
+
pad_token_id=tokenizer.pad_token_id if tokenizer.pad_token_id else tokenizer.eos_token_id
|
46 |
+
)[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Extract only the assistant's response
|
49 |
+
try:
|
50 |
+
assistant_response = response.split("Assistant:")[-1].strip()
|
51 |
+
if not assistant_response:
|
52 |
+
return "I apologize, but I couldn't generate a proper response."
|
53 |
+
return assistant_response
|
54 |
+
except:
|
55 |
+
return response.split(prompt)[-1].strip()
|
56 |
|
57 |
+
except Exception as e:
|
58 |
+
return f"An error occurred: {str(e)}"
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def main():
|
61 |
+
st.set_page_config(page_title="LLM Chat Interface", page_icon="🤖")
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
st.title("💬 Quick Chat Assistant")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Initialize session state
|
66 |
if "chat_history" not in st.session_state:
|
67 |
st.session_state.chat_history = []
|
68 |
+
|
69 |
+
if "model_loaded" not in st.session_state:
|
70 |
+
st.session_state.model_loaded = False
|
71 |
|
72 |
# Initialize model (only once)
|
73 |
+
if not st.session_state.model_loaded:
|
74 |
+
with st.spinner("Loading the model... (this should take just a few seconds)"):
|
75 |
try:
|
76 |
+
pipe, tokenizer = initialize_model()
|
77 |
+
st.session_state.pipe = pipe
|
78 |
st.session_state.tokenizer = tokenizer
|
79 |
+
st.session_state.model_loaded = True
|
80 |
except Exception as e:
|
81 |
st.error(f"Error loading model: {str(e)}")
|
82 |
return
|
|
|
89 |
st.write(message["assistant"])
|
90 |
|
91 |
# Chat input
|
92 |
+
if prompt := st.chat_input("Ask me anything!"):
|
93 |
# Display user message
|
94 |
with st.chat_message("user"):
|
95 |
st.write(prompt)
|
|
|
101 |
st.session_state.chat_history.append(current_turn)
|
102 |
|
103 |
response = generate_response(
|
104 |
+
st.session_state.pipe,
|
105 |
st.session_state.tokenizer,
|
106 |
prompt,
|
107 |
st.session_state.chat_history
|
|
|
110 |
st.write(response)
|
111 |
st.session_state.chat_history[-1]["assistant"] = response
|
112 |
|
113 |
+
# Keep only last 5 turns
|
114 |
if len(st.session_state.chat_history) > 5:
|
115 |
st.session_state.chat_history = st.session_state.chat_history[-5:]
|
116 |
|
117 |
+
# Sidebar
|
118 |
with st.sidebar:
|
|
|
119 |
if st.button("Clear Chat"):
|
120 |
st.session_state.chat_history = []
|
121 |
st.rerun()
|
122 |
|
123 |
st.markdown("---")
|
124 |
st.markdown("""
|
125 |
+
### Chat Info
|
126 |
+
- Using OPT-125M model
|
127 |
+
- Optimized for quick responses
|
128 |
+
- Best for short conversations
|
129 |
""")
|
130 |
|
131 |
if __name__ == "__main__":
|