Spaces:
Running
on
T4
Running
on
T4
import nltk | |
import pickle | |
import pandas as pd | |
import gradio as gr | |
import numpy as np | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
from librosa import load, resample | |
# Constants | |
filename = 'df10k_SP500_2020.csv.zip' | |
model_name = 'sentence-transformers/msmarco-distilbert-base-v4' | |
max_sequence_length = 512 | |
embeddings_filename = 'df10k_embeddings_msmarco-distilbert-base-v4.npz' | |
asr_model = 'facebook/wav2vec2-xls-r-300m-21-to-en' | |
# Load corpus | |
df = pd.read_csv(filename) | |
df.drop_duplicates(inplace=True) | |
print(f'Number of documents: {len(df)}') | |
nltk.download('punkt') | |
corpus = [] | |
sentence_count = [] | |
for _, row in df.iterrows(): | |
# We're interested in the 'mdna' column: 'Management discussion and analysis' | |
sentences = nltk.tokenize.sent_tokenize(str(row['mdna']), language='english') | |
sentence_count.append(len(sentences)) | |
for _,s in enumerate(sentences): | |
corpus.append(s) | |
print(f'Number of sentences: {len(corpus)}') | |
# Load pre-embedded corpus | |
corpus_embeddings = np.load(embeddings_filename)['arr_0'] | |
print(f'Number of embeddings: {corpus_embeddings.shape[0]}') | |
# Load embedding model | |
model = SentenceTransformer(model_name) | |
model.max_seq_length = max_sequence_length | |
# Load speech to text model | |
asr = pipeline('automatic-speech-recognition', model=asr_model, feature_extractor=asr_model) | |
def find_sentences(query, hits): | |
query_embedding = model.encode(query) | |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=hits) | |
hits = hits[0] | |
output = pd.DataFrame(columns=['Ticker', 'Form type', 'Filing date', 'Text', 'Score']) | |
for hit in hits: | |
corpus_id = hit['corpus_id'] | |
# Find source document based on sentence index | |
count = 0 | |
for idx, c in enumerate(sentence_count): | |
count+=c | |
if (corpus_id > count-1): | |
continue | |
else: | |
doc = df.iloc[idx] | |
new_row = { | |
'Ticker' : doc['ticker'], | |
'Form type' : doc['form_type'], | |
'Filing date': doc['filing_date'], | |
'Text' : corpus[corpus_id][:80], | |
'Score' : '{:.2f}'.format(hit['score']) | |
} | |
output = output.append(new_row, ignore_index=True) | |
break | |
return output | |
def process(input_selection, query, filepath, hits): | |
if input_selection=='speech': | |
speech, sampling_rate = load(filepath) | |
if sampling_rate != 16000: | |
speech = resample(speech, sampling_rate, 16000) | |
text = asr(speech)['text'] | |
else: | |
text = query | |
return text, find_sentences(text, hits) | |
# Gradio inputs | |
buttons = gr.inputs.Radio(['text','speech'], type='value', default='speech', label='Input selection') | |
text_query = gr.inputs.Textbox(lines=1, label='Text input', default='The company is under investigation by tax authorities for potential fraud.') | |
mic = gr.inputs.Audio(source='microphone', type='filepath', label='Speech input', optional=True) | |
slider = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=3, label='Number of hits') | |
# Gradio outputs | |
speech_query = gr.outputs.Textbox(type='auto', label='Query string') | |
results = gr.outputs.Dataframe( | |
headers=['Ticker', 'Form type', 'Filing date', 'Text', 'Score'], | |
label='Query results') | |
iface = gr.Interface( | |
theme='huggingface', | |
description='This Spaces lets you query a text corpus containing 2020 annual filings for all S&P500 companies. You can type a text query in English, or record an audio query in 21 languages. You can find a technical deep dive at https://www.youtube.com/watch?v=YPme-gR0f80', | |
fn=process, | |
layout='horizontal', | |
inputs=[buttons,text_query,mic,slider], | |
outputs=[speech_query, results], | |
examples=[ | |
['text', "The company is under investigation by tax authorities for potential fraud.", 'dummy.wav', 3], | |
['text', "How much money does Microsoft make with Azure?", 'dummy.wav', 3], | |
['speech', "Nos ventes internationales ont significativement augmenté.", 'sales_16k_fr.wav', 3], | |
['speech', "Le prix de l'énergie pourrait avoir un impact négatif dans le futur.", 'energy_16k_fr.wav', 3], | |
['speech', "El precio de la energía podría tener un impacto negativo en el futuro.", 'energy_24k_es.wav', 3], | |
['speech', "Mehrere Steuerbehörden untersuchen unser Unternehmen.", 'tax_24k_de.wav', 3] | |
], | |
allow_flagging=False | |
) | |
iface.launch() | |