Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-sentiment-analysis-15862661") | |
model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-sentiment-analysis-15862661") | |
def predict(review): | |
inputs = tokenizer(review, padding=True, truncation=True, return_tensors="pt") | |
outputs = model(**inputs) | |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predictions = predictions.detach().numpy()[0] | |
index = np.argmax(predictions) | |
score = predictions[index] | |
return "This review is {:.2f}% {}".format(100*score, "negative" if index==0 else "positive") | |
iface = gr.Interface(fn=predict, inputs="text", outputs="text") | |
iface.launch() | |