|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config import BaseAudioConfig, BaseDatasetConfig |
|
from TTS.tts.configs.fast_speech_config import FastSpeechConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.forward_tts import ForwardTTS |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) |
|
|
|
audio_config = BaseAudioConfig( |
|
sample_rate=22050, |
|
do_trim_silence=True, |
|
trim_db=23.0, |
|
signal_norm=False, |
|
mel_fmin=0.0, |
|
mel_fmax=8000, |
|
spec_gain=1.0, |
|
log_func="np.log", |
|
ref_level_db=20, |
|
preemphasis=0.0, |
|
) |
|
|
|
config = FastSpeechConfig( |
|
run_name="fast_speech_vctk", |
|
audio=audio_config, |
|
batch_size=32, |
|
eval_batch_size=16, |
|
num_loader_workers=8, |
|
num_eval_loader_workers=4, |
|
compute_input_seq_cache=True, |
|
precompute_num_workers=4, |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=1000, |
|
text_cleaner="english_cleaners", |
|
use_phonemes=True, |
|
phoneme_language="en-us", |
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), |
|
print_step=50, |
|
print_eval=False, |
|
mixed_precision=False, |
|
min_text_len=0, |
|
max_text_len=500, |
|
min_audio_len=0, |
|
max_audio_len=500000, |
|
output_path=output_path, |
|
datasets=[dataset_config], |
|
use_speaker_embedding=True, |
|
) |
|
|
|
|
|
|
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
|
|
|
|
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
dataset_config, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
|
|
speaker_manager = SpeakerManager() |
|
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") |
|
config.model_args.num_speakers = speaker_manager.num_speakers |
|
|
|
|
|
model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager) |
|
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples |
|
) |
|
|
|
|
|
trainer.fit() |
|
|