|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config.shared_configs import BaseAudioConfig |
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig, CapacitronVAEConfig |
|
from TTS.tts.configs.tacotron_config import TacotronConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.tacotron import Tacotron |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
data_path = "/srv/data/" |
|
|
|
|
|
dataset_config = BaseDatasetConfig(formatter="ljspeech", meta_file_train="metadata.csv", path=data_path) |
|
|
|
audio_config = BaseAudioConfig( |
|
sample_rate=24000, |
|
do_trim_silence=True, |
|
trim_db=60.0, |
|
signal_norm=True, |
|
mel_fmin=80.0, |
|
mel_fmax=12000, |
|
spec_gain=20.0, |
|
log_func="np.log10", |
|
ref_level_db=20, |
|
preemphasis=0.0, |
|
min_level_db=-100, |
|
) |
|
|
|
|
|
capacitron_config = CapacitronVAEConfig(capacitron_VAE_loss_alpha=1.0) |
|
|
|
config = TacotronConfig( |
|
run_name="Blizzard-Capacitron-T1", |
|
audio=audio_config, |
|
capacitron_vae=capacitron_config, |
|
use_capacitron_vae=True, |
|
batch_size=128, |
|
max_audio_len=6 * 24000, |
|
min_audio_len=0.5 * 24000, |
|
eval_batch_size=16, |
|
num_loader_workers=12, |
|
num_eval_loader_workers=8, |
|
precompute_num_workers=24, |
|
run_eval=True, |
|
test_delay_epochs=5, |
|
r=2, |
|
optimizer="CapacitronOptimizer", |
|
optimizer_params={"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, "SGD": {"lr": 1e-5, "momentum": 0.9}}, |
|
attention_type="graves", |
|
attention_heads=5, |
|
epochs=1000, |
|
text_cleaner="phoneme_cleaners", |
|
use_phonemes=True, |
|
phoneme_language="en-us", |
|
phonemizer="espeak", |
|
phoneme_cache_path=os.path.join(data_path, "phoneme_cache"), |
|
stopnet_pos_weight=15, |
|
print_step=50, |
|
print_eval=True, |
|
mixed_precision=False, |
|
output_path=output_path, |
|
datasets=[dataset_config], |
|
lr=1e-3, |
|
lr_scheduler="StepwiseGradualLR", |
|
lr_scheduler_params={"gradual_learning_rates": [[0, 1e-3], [2e4, 5e-4], [4e4, 3e-4], [6e4, 1e-4], [8e4, 5e-5]]}, |
|
scheduler_after_epoch=False, |
|
loss_masking=False, |
|
decoder_loss_alpha=1.0, |
|
postnet_loss_alpha=1.0, |
|
postnet_diff_spec_alpha=1.0, |
|
decoder_diff_spec_alpha=1.0, |
|
decoder_ssim_alpha=1.0, |
|
postnet_ssim_alpha=1.0, |
|
) |
|
|
|
ap = AudioProcessor(**config.audio.to_dict()) |
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config) |
|
|
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) |
|
|
|
model = Tacotron(config, ap, tokenizer, speaker_manager=None) |
|
|
|
trainer = Trainer( |
|
TrainerArgs(), |
|
config, |
|
output_path, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
|
|
|
|
trainer.fit() |
|
|