|
import tempfile |
|
import warnings |
|
from pathlib import Path |
|
from typing import Union |
|
|
|
import numpy as np |
|
from torch import nn |
|
|
|
from TTS.cs_api import CS_API |
|
from TTS.utils.audio.numpy_transforms import save_wav |
|
from TTS.utils.manage import ModelManager |
|
from TTS.utils.synthesizer import Synthesizer |
|
from TTS.config import load_config |
|
|
|
|
|
class TTS(nn.Module): |
|
"""TODO: Add voice conversion and Capacitron support.""" |
|
|
|
def __init__( |
|
self, |
|
model_name: str = "", |
|
model_path: str = None, |
|
config_path: str = None, |
|
vocoder_path: str = None, |
|
vocoder_config_path: str = None, |
|
progress_bar: bool = True, |
|
cs_api_model: str = "XTTS", |
|
gpu=False, |
|
): |
|
"""🐸TTS python interface that allows to load and use the released models. |
|
|
|
Example with a multi-speaker model: |
|
>>> from TTS.api import TTS |
|
>>> tts = TTS(TTS.list_models()[0]) |
|
>>> wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0]) |
|
>>> tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav") |
|
|
|
Example with a single-speaker model: |
|
>>> tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False) |
|
>>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav") |
|
|
|
Example loading a model from a path: |
|
>>> tts = TTS(model_path="/path/to/checkpoint_100000.pth", config_path="/path/to/config.json", progress_bar=False, gpu=False) |
|
>>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav") |
|
|
|
Example voice cloning with YourTTS in English, French and Portuguese: |
|
>>> tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) |
|
>>> tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="thisisit.wav") |
|
>>> tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="thisisit.wav") |
|
>>> tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="thisisit.wav") |
|
|
|
Example Fairseq TTS models (uses ISO language codes in https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html): |
|
>>> tts = TTS(model_name="tts_models/eng/fairseq/vits", progress_bar=False, gpu=True) |
|
>>> tts.tts_to_file("This is a test.", file_path="output.wav") |
|
|
|
Args: |
|
model_name (str, optional): Model name to load. You can list models by ```tts.models```. Defaults to None. |
|
model_path (str, optional): Path to the model checkpoint. Defaults to None. |
|
config_path (str, optional): Path to the model config. Defaults to None. |
|
vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None. |
|
vocoder_config_path (str, optional): Path to the vocoder config. Defaults to None. |
|
progress_bar (bool, optional): Whether to pring a progress bar while downloading a model. Defaults to True. |
|
cs_api_model (str, optional): Name of the model to use for the Coqui Studio API. Available models are |
|
"XTTS", "V1". You can also use `TTS.cs_api.CS_API" for more control. |
|
Defaults to "XTTS". |
|
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. |
|
""" |
|
super().__init__() |
|
self.manager = ModelManager(models_file=self.get_models_file_path(), progress_bar=progress_bar, verbose=False) |
|
self.config = load_config(config_path) if config_path else None |
|
self.synthesizer = None |
|
self.voice_converter = None |
|
self.csapi = None |
|
self.cs_api_model = cs_api_model |
|
self.model_name = "" |
|
if gpu: |
|
warnings.warn("`gpu` will be deprecated. Please use `tts.to(device)` instead.") |
|
|
|
if model_name is not None and len(model_name) > 0: |
|
if "tts_models" in model_name or "coqui_studio" in model_name: |
|
self.load_tts_model_by_name(model_name, gpu) |
|
elif "voice_conversion_models" in model_name: |
|
self.load_vc_model_by_name(model_name, gpu) |
|
else: |
|
self.load_model_by_name(model_name, gpu) |
|
|
|
if model_path: |
|
self.load_tts_model_by_path( |
|
model_path, config_path, vocoder_path=vocoder_path, vocoder_config=vocoder_config_path, gpu=gpu |
|
) |
|
|
|
@property |
|
def models(self): |
|
return self.manager.list_tts_models() |
|
|
|
@property |
|
def is_multi_speaker(self): |
|
if hasattr(self.synthesizer.tts_model, "speaker_manager") and self.synthesizer.tts_model.speaker_manager: |
|
return self.synthesizer.tts_model.speaker_manager.num_speakers > 1 |
|
return False |
|
|
|
@property |
|
def is_coqui_studio(self): |
|
if self.model_name is None: |
|
return False |
|
return "coqui_studio" in self.model_name |
|
|
|
@property |
|
def is_multi_lingual(self): |
|
|
|
if ( |
|
isinstance(self.model_name, str) |
|
and "xtts" in self.model_name |
|
or self.config |
|
and ("xtts" in self.config.model or len(self.config.languages) > 1) |
|
): |
|
return True |
|
if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager: |
|
return self.synthesizer.tts_model.language_manager.num_languages > 1 |
|
return False |
|
|
|
@property |
|
def speakers(self): |
|
if not self.is_multi_speaker: |
|
return None |
|
return self.synthesizer.tts_model.speaker_manager.speaker_names |
|
|
|
@property |
|
def languages(self): |
|
if not self.is_multi_lingual: |
|
return None |
|
return self.synthesizer.tts_model.language_manager.language_names |
|
|
|
@staticmethod |
|
def get_models_file_path(): |
|
return Path(__file__).parent / ".models.json" |
|
|
|
def list_models(self): |
|
try: |
|
csapi = CS_API(model=self.cs_api_model) |
|
models = csapi.list_speakers_as_tts_models() |
|
except ValueError as e: |
|
print(e) |
|
models = [] |
|
manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False) |
|
return manager.list_tts_models() + models |
|
|
|
def download_model_by_name(self, model_name: str): |
|
model_path, config_path, model_item = self.manager.download_model(model_name) |
|
if "fairseq" in model_name or (model_item is not None and isinstance(model_item["model_url"], list)): |
|
|
|
|
|
return None, None, None, None, model_path |
|
if model_item.get("default_vocoder") is None: |
|
return model_path, config_path, None, None, None |
|
vocoder_path, vocoder_config_path, _ = self.manager.download_model(model_item["default_vocoder"]) |
|
return model_path, config_path, vocoder_path, vocoder_config_path, None |
|
|
|
def load_model_by_name(self, model_name: str, gpu: bool = False): |
|
"""Load one of the 🐸TTS models by name. |
|
|
|
Args: |
|
model_name (str): Model name to load. You can list models by ```tts.models```. |
|
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. |
|
""" |
|
self.load_tts_model_by_name(model_name, gpu) |
|
|
|
def load_vc_model_by_name(self, model_name: str, gpu: bool = False): |
|
"""Load one of the voice conversion models by name. |
|
|
|
Args: |
|
model_name (str): Model name to load. You can list models by ```tts.models```. |
|
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. |
|
""" |
|
self.model_name = model_name |
|
model_path, config_path, _, _, _ = self.download_model_by_name(model_name) |
|
self.voice_converter = Synthesizer(vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu) |
|
|
|
def load_tts_model_by_name(self, model_name: str, gpu: bool = False): |
|
"""Load one of 🐸TTS models by name. |
|
|
|
Args: |
|
model_name (str): Model name to load. You can list models by ```tts.models```. |
|
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. |
|
|
|
TODO: Add tests |
|
""" |
|
self.synthesizer = None |
|
self.csapi = None |
|
self.model_name = model_name |
|
|
|
if "coqui_studio" in model_name: |
|
self.csapi = CS_API() |
|
else: |
|
model_path, config_path, vocoder_path, vocoder_config_path, model_dir = self.download_model_by_name( |
|
model_name |
|
) |
|
|
|
|
|
|
|
self.synthesizer = Synthesizer( |
|
tts_checkpoint=model_path, |
|
tts_config_path=config_path, |
|
tts_speakers_file=None, |
|
tts_languages_file=None, |
|
vocoder_checkpoint=vocoder_path, |
|
vocoder_config=vocoder_config_path, |
|
encoder_checkpoint=None, |
|
encoder_config=None, |
|
model_dir=model_dir, |
|
use_cuda=gpu, |
|
) |
|
|
|
def load_tts_model_by_path( |
|
self, model_path: str, config_path: str, vocoder_path: str = None, vocoder_config: str = None, gpu: bool = False |
|
): |
|
"""Load a model from a path. |
|
|
|
Args: |
|
model_path (str): Path to the model checkpoint. |
|
config_path (str): Path to the model config. |
|
vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None. |
|
vocoder_config (str, optional): Path to the vocoder config. Defaults to None. |
|
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False. |
|
""" |
|
|
|
self.synthesizer = Synthesizer( |
|
tts_checkpoint=model_path, |
|
tts_config_path=config_path, |
|
tts_speakers_file=None, |
|
tts_languages_file=None, |
|
vocoder_checkpoint=vocoder_path, |
|
vocoder_config=vocoder_config, |
|
encoder_checkpoint=None, |
|
encoder_config=None, |
|
use_cuda=gpu, |
|
) |
|
|
|
def _check_arguments( |
|
self, |
|
speaker: str = None, |
|
language: str = None, |
|
speaker_wav: str = None, |
|
emotion: str = None, |
|
speed: float = None, |
|
**kwargs, |
|
) -> None: |
|
"""Check if the arguments are valid for the model.""" |
|
if not self.is_coqui_studio: |
|
|
|
if self.is_multi_speaker and (speaker is None and speaker_wav is None): |
|
raise ValueError("Model is multi-speaker but no `speaker` is provided.") |
|
if self.is_multi_lingual and language is None: |
|
raise ValueError("Model is multi-lingual but no `language` is provided.") |
|
if not self.is_multi_speaker and speaker is not None and "voice_dir" not in kwargs: |
|
raise ValueError("Model is not multi-speaker but `speaker` is provided.") |
|
if not self.is_multi_lingual and language is not None: |
|
raise ValueError("Model is not multi-lingual but `language` is provided.") |
|
if not emotion is None and not speed is None: |
|
raise ValueError("Emotion and speed can only be used with Coqui Studio models.") |
|
else: |
|
if emotion is None: |
|
emotion = "Neutral" |
|
if speed is None: |
|
speed = 1.0 |
|
|
|
if speaker_wav is not None: |
|
raise ValueError("Coqui Studio models do not support `speaker_wav` argument.") |
|
if speaker is not None: |
|
raise ValueError("Coqui Studio models do not support `speaker` argument.") |
|
if language is not None and language != "en": |
|
raise ValueError("Coqui Studio models currently support only `language=en` argument.") |
|
if emotion not in ["Neutral", "Happy", "Sad", "Angry", "Dull"]: |
|
raise ValueError(f"Emotion - `{emotion}` - must be one of `Neutral`, `Happy`, `Sad`, `Angry`, `Dull`.") |
|
|
|
def tts_coqui_studio( |
|
self, |
|
text: str, |
|
speaker_name: str = None, |
|
language: str = None, |
|
emotion: str = None, |
|
speed: float = 1.0, |
|
pipe_out=None, |
|
file_path: str = None, |
|
) -> Union[np.ndarray, str]: |
|
"""Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API. |
|
|
|
Args: |
|
text (str): |
|
Input text to synthesize. |
|
speaker_name (str, optional): |
|
Speaker name from Coqui Studio. Defaults to None. |
|
language (str): Language of the text. If None, the default language of the speaker is used. Language is only |
|
supported by `XTTS` model. |
|
emotion (str, optional): |
|
Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only available |
|
with "V1" model. Defaults to None. |
|
speed (float, optional): |
|
Speed of the speech. Defaults to 1.0. |
|
pipe_out (BytesIO, optional): |
|
Flag to stdout the generated TTS wav file for shell pipe. |
|
file_path (str, optional): |
|
Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None. |
|
|
|
Returns: |
|
Union[np.ndarray, str]: Waveform of the synthesized speech or path to the output file. |
|
""" |
|
speaker_name = self.model_name.split("/")[2] |
|
if file_path is not None: |
|
return self.csapi.tts_to_file( |
|
text=text, |
|
speaker_name=speaker_name, |
|
language=language, |
|
speed=speed, |
|
pipe_out=pipe_out, |
|
emotion=emotion, |
|
file_path=file_path, |
|
)[0] |
|
return self.csapi.tts(text=text, speaker_name=speaker_name, language=language, speed=speed, emotion=emotion)[0] |
|
|
|
def tts( |
|
self, |
|
text: str, |
|
speaker: str = None, |
|
language: str = None, |
|
speaker_wav: str = None, |
|
emotion: str = None, |
|
speed: float = None, |
|
split_sentences: bool = True, |
|
**kwargs, |
|
): |
|
"""Convert text to speech. |
|
|
|
Args: |
|
text (str): |
|
Input text to synthesize. |
|
speaker (str, optional): |
|
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by |
|
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None. |
|
language (str): Language of the text. If None, the default language of the speaker is used. Language is only |
|
supported by `XTTS` model. |
|
speaker_wav (str, optional): |
|
Path to a reference wav file to use for voice cloning with supporting models like YourTTS. |
|
Defaults to None. |
|
emotion (str, optional): |
|
Emotion to use for 🐸Coqui Studio models. If None, Studio models use "Neutral". Defaults to None. |
|
speed (float, optional): |
|
Speed factor to use for 🐸Coqui Studio models, between 0 and 2.0. If None, Studio models use 1.0. |
|
Defaults to None. |
|
split_sentences (bool, optional): |
|
Split text into sentences, synthesize them separately and concatenate the file audio. |
|
Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only |
|
applicable to the 🐸TTS models. Defaults to True. |
|
kwargs (dict, optional): |
|
Additional arguments for the model. |
|
""" |
|
self._check_arguments( |
|
speaker=speaker, language=language, speaker_wav=speaker_wav, emotion=emotion, speed=speed, **kwargs |
|
) |
|
if self.csapi is not None: |
|
return self.tts_coqui_studio( |
|
text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed |
|
) |
|
wav = self.synthesizer.tts( |
|
text=text, |
|
speaker_name=speaker, |
|
language_name=language, |
|
speaker_wav=speaker_wav, |
|
reference_wav=None, |
|
style_wav=None, |
|
style_text=None, |
|
reference_speaker_name=None, |
|
split_sentences=split_sentences, |
|
**kwargs, |
|
) |
|
return wav |
|
|
|
def tts_to_file( |
|
self, |
|
text: str, |
|
speaker: str = None, |
|
language: str = None, |
|
speaker_wav: str = None, |
|
emotion: str = None, |
|
speed: float = 1.0, |
|
pipe_out=None, |
|
file_path: str = "output.wav", |
|
split_sentences: bool = True, |
|
**kwargs, |
|
): |
|
"""Convert text to speech. |
|
|
|
Args: |
|
text (str): |
|
Input text to synthesize. |
|
speaker (str, optional): |
|
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by |
|
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None. |
|
language (str, optional): |
|
Language code for multi-lingual models. You can check whether loaded model is multi-lingual |
|
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None. |
|
speaker_wav (str, optional): |
|
Path to a reference wav file to use for voice cloning with supporting models like YourTTS. |
|
Defaults to None. |
|
emotion (str, optional): |
|
Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral". |
|
speed (float, optional): |
|
Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None. |
|
pipe_out (BytesIO, optional): |
|
Flag to stdout the generated TTS wav file for shell pipe. |
|
file_path (str, optional): |
|
Output file path. Defaults to "output.wav". |
|
split_sentences (bool, optional): |
|
Split text into sentences, synthesize them separately and concatenate the file audio. |
|
Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only |
|
applicable to the 🐸TTS models. Defaults to True. |
|
kwargs (dict, optional): |
|
Additional arguments for the model. |
|
""" |
|
self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs) |
|
|
|
if self.csapi is not None: |
|
return self.tts_coqui_studio( |
|
text=text, |
|
speaker_name=speaker, |
|
language=language, |
|
emotion=emotion, |
|
speed=speed, |
|
file_path=file_path, |
|
pipe_out=pipe_out, |
|
) |
|
wav = self.tts( |
|
text=text, |
|
speaker=speaker, |
|
language=language, |
|
speaker_wav=speaker_wav, |
|
split_sentences=split_sentences, |
|
**kwargs, |
|
) |
|
self.synthesizer.save_wav(wav=wav, path=file_path, pipe_out=pipe_out) |
|
return file_path |
|
|
|
def voice_conversion( |
|
self, |
|
source_wav: str, |
|
target_wav: str, |
|
): |
|
"""Voice conversion with FreeVC. Convert source wav to target speaker. |
|
|
|
Args:`` |
|
source_wav (str): |
|
Path to the source wav file. |
|
target_wav (str):` |
|
Path to the target wav file. |
|
""" |
|
wav = self.voice_converter.voice_conversion(source_wav=source_wav, target_wav=target_wav) |
|
return wav |
|
|
|
def voice_conversion_to_file( |
|
self, |
|
source_wav: str, |
|
target_wav: str, |
|
file_path: str = "output.wav", |
|
): |
|
"""Voice conversion with FreeVC. Convert source wav to target speaker. |
|
|
|
Args: |
|
source_wav (str): |
|
Path to the source wav file. |
|
target_wav (str): |
|
Path to the target wav file. |
|
file_path (str, optional): |
|
Output file path. Defaults to "output.wav". |
|
""" |
|
wav = self.voice_conversion(source_wav=source_wav, target_wav=target_wav) |
|
save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate) |
|
return file_path |
|
|
|
def tts_with_vc( |
|
self, |
|
text: str, |
|
language: str = None, |
|
speaker_wav: str = None, |
|
speaker: str = None, |
|
split_sentences: bool = True, |
|
): |
|
"""Convert text to speech with voice conversion. |
|
|
|
It combines tts with voice conversion to fake voice cloning. |
|
|
|
- Convert text to speech with tts. |
|
- Convert the output wav to target speaker with voice conversion. |
|
|
|
Args: |
|
text (str): |
|
Input text to synthesize. |
|
language (str, optional): |
|
Language code for multi-lingual models. You can check whether loaded model is multi-lingual |
|
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None. |
|
speaker_wav (str, optional): |
|
Path to a reference wav file to use for voice cloning with supporting models like YourTTS. |
|
Defaults to None. |
|
speaker (str, optional): |
|
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by |
|
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None. |
|
split_sentences (bool, optional): |
|
Split text into sentences, synthesize them separately and concatenate the file audio. |
|
Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only |
|
applicable to the 🐸TTS models. Defaults to True. |
|
""" |
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
|
|
self.tts_to_file( |
|
text=text, speaker=speaker, language=language, file_path=fp.name, split_sentences=split_sentences |
|
) |
|
if self.voice_converter is None: |
|
self.load_vc_model_by_name("voice_conversion_models/multilingual/vctk/freevc24") |
|
wav = self.voice_converter.voice_conversion(source_wav=fp.name, target_wav=speaker_wav) |
|
return wav |
|
|
|
def tts_with_vc_to_file( |
|
self, |
|
text: str, |
|
language: str = None, |
|
speaker_wav: str = None, |
|
file_path: str = "output.wav", |
|
speaker: str = None, |
|
split_sentences: bool = True, |
|
): |
|
"""Convert text to speech with voice conversion and save to file. |
|
|
|
Check `tts_with_vc` for more details. |
|
|
|
Args: |
|
text (str): |
|
Input text to synthesize. |
|
language (str, optional): |
|
Language code for multi-lingual models. You can check whether loaded model is multi-lingual |
|
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None. |
|
speaker_wav (str, optional): |
|
Path to a reference wav file to use for voice cloning with supporting models like YourTTS. |
|
Defaults to None. |
|
file_path (str, optional): |
|
Output file path. Defaults to "output.wav". |
|
speaker (str, optional): |
|
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by |
|
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None. |
|
split_sentences (bool, optional): |
|
Split text into sentences, synthesize them separately and concatenate the file audio. |
|
Setting it False uses more VRAM and possibly hit model specific text length or VRAM limits. Only |
|
applicable to the 🐸TTS models. Defaults to True. |
|
""" |
|
wav = self.tts_with_vc( |
|
text=text, language=language, speaker_wav=speaker_wav, speaker=speaker, split_sentences=split_sentences |
|
) |
|
save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate) |
|
|