Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,8 @@ import torch
|
|
4 |
import librosa
|
5 |
|
6 |
# Load the model and processor
|
7 |
-
processor = Wav2Vec2Processor.from_pretrained("
|
8 |
-
model = Wav2Vec2ForCTC.from_pretrained("
|
9 |
|
10 |
def transcribe_speech(audio_path):
|
11 |
speech, _ = librosa.load(audio_path, sr=16000)
|
@@ -16,12 +16,28 @@ def transcribe_speech(audio_path):
|
|
16 |
transcription = processor.batch_decode(predicted_ids)
|
17 |
return transcription[0]
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def pipe(text, voice, image_in):
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
with gr.Blocks() as demo:
|
27 |
with gr.Column():
|
@@ -48,4 +64,4 @@ with gr.Blocks() as demo:
|
|
48 |
outputs=[video_o],
|
49 |
concurrency_limit=3
|
50 |
)
|
51 |
-
demo.queue(max_size=10).launch(show_error=True, show_api=False)
|
|
|
4 |
import librosa
|
5 |
|
6 |
# Load the model and processor
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h")
|
9 |
|
10 |
def transcribe_speech(audio_path):
|
11 |
speech, _ = librosa.load(audio_path, sr=16000)
|
|
|
16 |
transcription = processor.batch_decode(predicted_ids)
|
17 |
return transcription[0]
|
18 |
|
19 |
+
def get_dreamtalk(image_in, speech):
|
20 |
+
try:
|
21 |
+
client = Client("https://fffiloni-dreamtalk.hf.space/")
|
22 |
+
result = client.predict(
|
23 |
+
speech, # filepath in 'Audio input' Audio component
|
24 |
+
image_in, # filepath in 'Image' Image component
|
25 |
+
"M030_front_neutral_level1_001.mat", # Literal in 'emotional style' Dropdown component
|
26 |
+
api_name="/infer"
|
27 |
+
)
|
28 |
+
return result['video']
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error in get_dreamtalk: {e}")
|
31 |
+
raise gr.Error(f"Error in get_dreamtalk: {str(e)}")
|
32 |
+
|
33 |
def pipe(text, voice, image_in):
|
34 |
+
try:
|
35 |
+
speech = transcribe_speech(voice)
|
36 |
+
video = get_dreamtalk(image_in, speech)
|
37 |
+
return video
|
38 |
+
except Exception as e:
|
39 |
+
print(f"An error occurred while processing: {e}")
|
40 |
+
raise gr.Error(f"An error occurred while processing: {str(e)}")
|
41 |
|
42 |
with gr.Blocks() as demo:
|
43 |
with gr.Column():
|
|
|
64 |
outputs=[video_o],
|
65 |
concurrency_limit=3
|
66 |
)
|
67 |
+
demo.queue(max_size=10).launch(show_error=True, show_api=False)
|