judebebo32 commited on
Commit
4e3d592
·
verified ·
1 Parent(s): 1084a16

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import pickle
4
+
5
+ # Load the pre-trained model
6
+ with open('best_model.pkl', 'rb') as model_file:
7
+ model = pickle.load(model_file)
8
+
9
+ # Load the label encoder
10
+ with open('label_encoder.pkl', 'rb') as label_encoder_file:
11
+ label_encoder = pickle.load(label_encoder_file)
12
+
13
+ # Title of the app
14
+ st.title("Coffee Type Prediction")
15
+
16
+ # Sidebar inputs for user preferences
17
+ st.sidebar.header("User Preferences")
18
+
19
+ time_of_day = st.sidebar.selectbox("Time of Day", ['morning', 'afternoon', 'evening'])
20
+ coffee_strength = st.sidebar.selectbox("Coffee Strength", ['mild', 'regular', 'strong'])
21
+ sweetness_level = st.sidebar.selectbox("Sweetness Level", ['unsweetened', 'lightly sweetened', 'sweet'])
22
+ milk_type = st.sidebar.selectbox("Milk Type", ['none', 'regular', 'skim', 'almond'])
23
+ coffee_temperature = st.sidebar.selectbox("Coffee Temperature", ['hot', 'iced', 'cold brew'])
24
+ flavored_coffee = st.sidebar.selectbox("Flavored Coffee", ['yes', 'no'])
25
+ caffeine_tolerance = st.sidebar.selectbox("Caffeine Tolerance", ['low', 'medium', 'high'])
26
+ coffee_bean = st.sidebar.selectbox("Coffee Bean", ['Arabica', 'Robusta', 'blend'])
27
+ coffee_size = st.sidebar.selectbox("Coffee Size", ['small', 'medium', 'large'])
28
+ dietary_preferences = st.sidebar.selectbox("Dietary Preferences", ['none', 'vegan', 'lactose-intolerant'])
29
+
30
+ # Encoding the inputs manually (same encoding as in your training data)
31
+ input_data = pd.DataFrame({
32
+ 'Token_0': [time_of_day],
33
+ 'Token_1': [coffee_strength],
34
+ 'Token_2': [sweetness_level],
35
+ 'Token_3': [milk_type],
36
+ 'Token_4': [coffee_temperature],
37
+ 'Token_5': [flavored_coffee],
38
+ 'Token_6': [caffeine_tolerance],
39
+ 'Token_7': [coffee_bean],
40
+ 'Token_8': [coffee_size],
41
+ 'Token_9': [dietary_preferences]
42
+ })
43
+
44
+ # One-hot encode the input data (ensure it matches the training data)
45
+ input_encoded = pd.get_dummies(input_data)
46
+
47
+ # Align columns with the training data (required columns)
48
+ required_columns = [...] # Include all columns from the original model training data
49
+ for col in required_columns:
50
+ if col not in input_encoded.columns:
51
+ input_encoded[col] = 0
52
+ input_encoded = input_encoded[required_columns]
53
+
54
+ # Make the prediction
55
+ prediction = model.predict(input_encoded)[0]
56
+
57
+ # Reverse the label encoding (map the prediction back to the coffee type)
58
+ coffee_type = label_encoder.inverse_transform([prediction])[0]
59
+
60
+ # Display the prediction
61
+ st.subheader(f"Recommended Coffee: {coffee_type}")