Spaces:
Runtime error
Runtime error
judebebo32
commited on
Commit
•
c5c0350
1
Parent(s):
7b10259
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
import pickle
|
4 |
import os
|
5 |
|
6 |
-
#
|
7 |
def load_pickle_file(file_name):
|
8 |
file_path = os.path.join(os.path.dirname(__file__), file_name)
|
9 |
try:
|
@@ -15,19 +15,16 @@ def load_pickle_file(file_name):
|
|
15 |
except Exception as e:
|
16 |
return f"An error occurred while loading {file_name}: {e}"
|
17 |
|
18 |
-
# Load
|
19 |
model = load_pickle_file('best_model.pkl')
|
20 |
label_encoder = load_pickle_file('label_encoder.pkl')
|
21 |
|
22 |
-
# Check if the model and label encoder were loaded successfully
|
23 |
if isinstance(model, str) or isinstance(label_encoder, str):
|
24 |
-
# Print the error message for debugging
|
25 |
-
print(f"Error loading model or label encoder: {model} | {label_encoder}")
|
26 |
raise Exception(f"Error loading model or label encoder: {model} | {label_encoder}")
|
27 |
|
28 |
-
#
|
29 |
def predict_coffee_type(time_of_day, coffee_strength, sweetness_level, milk_type, coffee_temperature, flavored_coffee, caffeine_tolerance, coffee_bean, coffee_size, dietary_preferences):
|
30 |
-
#
|
31 |
input_data = pd.DataFrame({
|
32 |
'Token_0': [time_of_day],
|
33 |
'Token_1': [coffee_strength],
|
@@ -41,21 +38,18 @@ def predict_coffee_type(time_of_day, coffee_strength, sweetness_level, milk_type
|
|
41 |
'Token_9': [dietary_preferences]
|
42 |
})
|
43 |
|
44 |
-
# One-hot encode the input data
|
45 |
input_encoded = pd.get_dummies(input_data)
|
46 |
-
required_columns = model.feature_names_in_ # Ensure
|
47 |
for col in required_columns:
|
48 |
if col not in input_encoded.columns:
|
49 |
-
input_encoded[col] = 0 # Add missing columns
|
50 |
-
|
51 |
-
input_encoded = input_encoded[required_columns] #
|
52 |
-
|
53 |
-
#
|
54 |
prediction = model.predict(input_encoded)[0]
|
55 |
-
|
56 |
-
# Decode the label
|
57 |
coffee_type = label_encoder.inverse_transform([prediction])[0]
|
58 |
-
|
59 |
return f"Recommended Coffee: {coffee_type}"
|
60 |
|
61 |
# Set up Gradio interface
|
|
|
3 |
import pickle
|
4 |
import os
|
5 |
|
6 |
+
# Load pickle files
|
7 |
def load_pickle_file(file_name):
|
8 |
file_path = os.path.join(os.path.dirname(__file__), file_name)
|
9 |
try:
|
|
|
15 |
except Exception as e:
|
16 |
return f"An error occurred while loading {file_name}: {e}"
|
17 |
|
18 |
+
# Load model and label encoder
|
19 |
model = load_pickle_file('best_model.pkl')
|
20 |
label_encoder = load_pickle_file('label_encoder.pkl')
|
21 |
|
|
|
22 |
if isinstance(model, str) or isinstance(label_encoder, str):
|
|
|
|
|
23 |
raise Exception(f"Error loading model or label encoder: {model} | {label_encoder}")
|
24 |
|
25 |
+
# Prediction function
|
26 |
def predict_coffee_type(time_of_day, coffee_strength, sweetness_level, milk_type, coffee_temperature, flavored_coffee, caffeine_tolerance, coffee_bean, coffee_size, dietary_preferences):
|
27 |
+
# Prepare input data
|
28 |
input_data = pd.DataFrame({
|
29 |
'Token_0': [time_of_day],
|
30 |
'Token_1': [coffee_strength],
|
|
|
38 |
'Token_9': [dietary_preferences]
|
39 |
})
|
40 |
|
41 |
+
# One-hot encode the input data
|
42 |
input_encoded = pd.get_dummies(input_data)
|
43 |
+
required_columns = model.feature_names_in_ # Ensure columns match training data
|
44 |
for col in required_columns:
|
45 |
if col not in input_encoded.columns:
|
46 |
+
input_encoded[col] = 0 # Add missing columns
|
47 |
+
|
48 |
+
input_encoded = input_encoded[required_columns] # Reorder columns to match model training
|
49 |
+
|
50 |
+
# Predict the coffee type
|
51 |
prediction = model.predict(input_encoded)[0]
|
|
|
|
|
52 |
coffee_type = label_encoder.inverse_transform([prediction])[0]
|
|
|
53 |
return f"Recommended Coffee: {coffee_type}"
|
54 |
|
55 |
# Set up Gradio interface
|