|
import gradio as gr |
|
import huggingface_hub |
|
import onnxruntime as rt |
|
import numpy as np |
|
import cv2 |
|
import os |
|
import csv |
|
import datetime |
|
import time |
|
|
|
|
|
LOG_FILE = "processing_log.csv" |
|
LOG_HEADER = [ |
|
"Timestamp", "Repository", "Model Filename", "Model Size (MB)", |
|
"Image Resolution (WxH)", "Execution Provider", "Processing Time (s)" |
|
] |
|
|
|
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
model_repo_default = "skytnt/anime-seg" |
|
|
|
|
|
|
|
def initialize_log_file(): |
|
"""Creates the log file and writes the header if it doesn't exist.""" |
|
if not os.path.exists(LOG_FILE): |
|
try: |
|
with open(LOG_FILE, 'w', newline='', encoding='utf-8') as f: |
|
writer = csv.writer(f) |
|
writer.writerow(LOG_HEADER) |
|
print(f"Log file initialized: {LOG_FILE}") |
|
except IOError as e: |
|
print(f"Error initializing log file {LOG_FILE}: {e}") |
|
|
|
def log_processing_event(timestamp, repo, model_filename, model_size_mb, |
|
resolution, provider, processing_time): |
|
"""Appends a processing event to the CSV log file.""" |
|
try: |
|
with open(LOG_FILE, 'a', newline='', encoding='utf-8') as f: |
|
writer = csv.writer(f) |
|
writer.writerow([ |
|
timestamp, repo, model_filename, f"{model_size_mb:.2f}", |
|
resolution, provider, f"{processing_time:.4f}" |
|
]) |
|
except IOError as e: |
|
print(f"Error writing to log file {LOG_FILE}: {e}") |
|
except Exception as e: |
|
print(f"An unexpected error occurred during logging: {e}") |
|
|
|
def read_log_file(): |
|
"""Reads the entire log file content.""" |
|
try: |
|
if not os.path.exists(LOG_FILE): |
|
return "Log file not found." |
|
with open(LOG_FILE, 'r', encoding='utf-8') as f: |
|
|
|
return "".join(f.readlines()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
except IOError as e: |
|
print(f"Error reading log file {LOG_FILE}: {e}") |
|
return f"Error reading log file: {e}" |
|
except Exception as e: |
|
print(f"An unexpected error occurred reading log file: {e}") |
|
return f"Error reading log file: {e}" |
|
|
|
|
|
|
|
def get_model_details_from_choice(choice_string: str) -> tuple[str, float | None]: |
|
""" |
|
Extracts filename and size (MB) from the dropdown choice string. |
|
Returns (filename, size_mb) or (filename, None) if size is not parseable. |
|
""" |
|
if not choice_string: |
|
return "", None |
|
parts = choice_string.split(" (") |
|
filename = parts[0] |
|
size_mb = None |
|
if len(parts) > 1 and parts[1].endswith(" MB)"): |
|
try: |
|
size_str = parts[1].replace(" MB)", "") |
|
size_mb = float(size_str) |
|
except ValueError: |
|
pass |
|
return filename, size_mb |
|
|
|
|
|
|
|
def update_onnx_files(repo: str): |
|
""" |
|
Lists .onnx files in the Hugging Face repository and updates the Dropdown with file sizes. |
|
""" |
|
onnx_files_with_size = [] |
|
try: |
|
api = huggingface_hub.HfApi() |
|
repo_info = api.model_info(repo_id=repo, files_metadata=True) |
|
|
|
for file_info in repo_info.siblings: |
|
if file_info.rfilename.endswith('.onnx'): |
|
try: |
|
|
|
size_mb = file_info.size / (1024 * 1024) if file_info.size else 0 |
|
onnx_files_with_size.append(f"{file_info.rfilename} ({size_mb:.2f} MB)") |
|
except Exception: |
|
onnx_files_with_size.append(f"{file_info.rfilename} (Size N/A)") |
|
|
|
if onnx_files_with_size: |
|
onnx_files_with_size.sort() |
|
return gr.update(choices=onnx_files_with_size, value=onnx_files_with_size[0]) |
|
else: |
|
return gr.update(choices=[], value="", warning=f"No .onnx files found in repository '{repo}'") |
|
|
|
except huggingface_hub.utils.RepositoryNotFoundError: |
|
return gr.update(choices=[], value="", error=f"Repository '{repo}' not found or access denied.") |
|
except Exception as e: |
|
print(f"Error fetching repo files for {repo}: {e}") |
|
return gr.update(choices=[], value="", error=f"Error fetching files: {str(e)}") |
|
|
|
|
|
default_onnx_files_with_size = [] |
|
default_model_filename = "" |
|
try: |
|
initial_update = update_onnx_files(model_repo_default) |
|
if isinstance(initial_update, gr.update) and initial_update.choices: |
|
default_onnx_files_with_size = initial_update.choices |
|
default_model_filename, _ = get_model_details_from_choice(default_onnx_files_with_size[0]) |
|
else: |
|
default_onnx_files_with_size = ["isnetis.onnx (Size N/A)"] |
|
default_model_filename = "isnetis.onnx" |
|
print(f"Warning: Could not fetch initial ONNX files from {model_repo_default}. Using fallback '{default_model_filename}'.") |
|
except Exception as e: |
|
default_onnx_files_with_size = ["isnetis.onnx (Size N/A)"] |
|
default_model_filename = "isnetis.onnx" |
|
print(f"Error during initial model fetch: {e}. Using fallback '{default_model_filename}'.") |
|
|
|
|
|
current_model_repo = model_repo_default |
|
current_model_filename = default_model_filename |
|
|
|
|
|
model_path = None |
|
rmbg_model = None |
|
try: |
|
print(f"Attempting initial download: {current_model_repo}/{current_model_filename}") |
|
if current_model_filename: |
|
model_path = huggingface_hub.hf_hub_download(current_model_repo, current_model_filename) |
|
rmbg_model = rt.InferenceSession(model_path, providers=providers) |
|
print(f"Initial model loaded successfully: {model_path}") |
|
print(f"Available Execution Providers: {rt.get_available_providers()}") |
|
print(f"Using Provider(s): {rmbg_model.get_providers()}") |
|
else: |
|
print("FATAL: No default model filename determined. Cannot load initial model.") |
|
except Exception as e: |
|
print(f"FATAL: Could not download or load initial model '{current_model_repo}/{current_model_filename}'. Error: {e}") |
|
|
|
|
|
def get_mask(img, s=1024): |
|
if rmbg_model is None: |
|
raise gr.Error("Model is not loaded. Please check model selection and update status.") |
|
img_normalized = (img / 255.0).astype(np.float32) |
|
h0, w0 = img.shape[:2] |
|
if h0 >= w0: h, w = (s, int(s * w0 / h0)) |
|
else: h, w = (int(s * h0 / w0), s) |
|
ph, pw = s - h, s - w |
|
img_input = np.zeros([s, s, 3], dtype=np.float32) |
|
resized_img = cv2.resize(img_normalized, (w, h), interpolation=cv2.INTER_AREA) |
|
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = resized_img |
|
img_input = np.transpose(img_input, (2, 0, 1))[np.newaxis, :] |
|
input_name = rmbg_model.get_inputs()[0].name |
|
mask_output = rmbg_model.run(None, {input_name: img_input})[0][0] |
|
mask_processed = np.transpose(mask_output, (1, 2, 0)) |
|
mask_processed = mask_processed[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] |
|
mask_resized = cv2.resize(mask_processed, (w0, h0), interpolation=cv2.INTER_LINEAR) |
|
if mask_resized.ndim == 2: mask_resized = mask_resized[:, :, np.newaxis] |
|
mask_final = np.clip(mask_resized, 0, 1) |
|
return mask_final |
|
|
|
def rmbg_fn(img): |
|
if img is None: raise gr.Error("Please provide an input image.") |
|
mask = get_mask(img) |
|
if img.dtype != np.uint8: img = (img * 255).clip(0, 255).astype(np.uint8) if img.max() <= 1.0 else img.clip(0, 255).astype(np.uint8) |
|
alpha_channel = (mask * 255).astype(np.uint8) |
|
if img.shape[2] == 3: img_out_rgba = np.concatenate([img, alpha_channel], axis=2) |
|
else: img_out_rgba = img.copy(); img_out_rgba[:, :, 3] = alpha_channel[:,:,0] |
|
mask_img_display = (mask * 255).astype(np.uint8).repeat(3, axis=2) |
|
return mask_img_display, img_out_rgba |
|
|
|
|
|
def update_model(model_repo, model_filename_with_size): |
|
global rmbg_model, current_model_repo, current_model_filename |
|
model_filename, _ = get_model_details_from_choice(model_filename_with_size) |
|
if not model_filename: return "Error: No model filename selected or extracted." |
|
if model_repo == current_model_repo and model_filename == current_model_filename: |
|
|
|
current_provider = rmbg_model.get_providers()[0] if rmbg_model else "N/A" |
|
return f"Model already loaded: {current_model_repo}/{current_model_filename}\nUsing Provider: {current_provider}" |
|
|
|
try: |
|
print(f"Updating model to: {model_repo}/{model_filename}") |
|
model_path = huggingface_hub.hf_hub_download(model_repo, model_filename) |
|
new_rmbg_model = rt.InferenceSession(model_path, providers=providers) |
|
rmbg_model = new_rmbg_model |
|
current_model_repo = model_repo |
|
current_model_filename = model_filename |
|
active_provider = rmbg_model.get_providers()[0] |
|
print(f"Model updated successfully: {model_path}") |
|
print(f"Using Provider: {active_provider}") |
|
return f"Model updated: {current_model_repo}/{current_model_filename}\nUsing Provider: {active_provider}" |
|
except huggingface_hub.utils.HfHubHTTPError as e: |
|
print(f"Error downloading model: {e}") |
|
return f"Error downloading model: {model_repo}/{model_filename}. ({e.response.status_code})" |
|
except rt.ONNXRuntimeException as e: |
|
print(f"Error loading ONNX model: {e}") |
|
|
|
if "CUDAExecutionProvider" in str(e): |
|
return f"Error loading ONNX model '{model_filename}'. CUDA unavailable or setup issue? Falling back might require restart or different build. Error: {e}" |
|
return f"Error loading ONNX model '{model_filename}'. Incompatible or corrupted? Error: {e}" |
|
except Exception as e: |
|
print(f"Error updating model: {e}") |
|
return f"Error updating model: {str(e)}" |
|
|
|
|
|
def process_and_update(img, model_repo, model_filename_with_size, history): |
|
global current_model_repo, current_model_filename, rmbg_model |
|
|
|
|
|
if img is None: |
|
return None, [], history, "generated", "Please upload an image first.", read_log_file() |
|
if rmbg_model is None: |
|
return None, [], history, "generated", "ERROR: Model not loaded. Update model first.", read_log_file() |
|
|
|
selected_model_filename, selected_model_size_mb = get_model_details_from_choice(model_filename_with_size) |
|
status_message = "" |
|
|
|
|
|
if model_repo != current_model_repo or selected_model_filename != current_model_filename: |
|
status_message = update_model(model_repo, model_filename_with_size) |
|
if "Error" in status_message: |
|
return None, [], history, "generated", f"Model Update Failed:\n{status_message}", read_log_file() |
|
if rmbg_model is None: |
|
return None, [], history, "generated", "ERROR: Model failed to load after update.", read_log_file() |
|
|
|
|
|
try: |
|
start_time = time.time() |
|
mask_img, generated_img_rgba = rmbg_fn(img) |
|
end_time = time.time() |
|
|
|
processing_time = end_time - start_time |
|
|
|
|
|
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
h, w = img.shape[:2] |
|
resolution = f"{w}x{h}" |
|
|
|
active_provider = rmbg_model.get_providers()[0] |
|
|
|
|
|
log_processing_event( |
|
timestamp=timestamp, |
|
repo=current_model_repo, |
|
model_filename=current_model_filename, |
|
model_size_mb=selected_model_size_mb if selected_model_size_mb is not None else 0.0, |
|
resolution=resolution, |
|
provider=active_provider, |
|
processing_time=processing_time |
|
) |
|
|
|
|
|
new_history = history + [generated_img_rgba] |
|
output_pair = [mask_img, generated_img_rgba] |
|
current_log_content = read_log_file() |
|
|
|
status_message = f"{status_message}\nProcessing complete ({processing_time:.2f}s)".strip() |
|
|
|
return generated_img_rgba, output_pair, new_history, "generated", status_message, current_log_content |
|
|
|
except Exception as e: |
|
print(f"Error during processing: {e}") |
|
import traceback |
|
traceback.print_exc() |
|
|
|
return None, [], history, "generated", f"Error during processing: {str(e)}", read_log_file() |
|
|
|
|
|
|
|
def toggle_view(view_state, output_pair): |
|
if not output_pair or len(output_pair) != 2: |
|
return None, view_state, "View Mask" if view_state == "generated" else "View Generated" |
|
if view_state == "generated": |
|
return output_pair[0], "mask", "View Generated" |
|
else: |
|
return output_pair[1], "generated", "View Mask" |
|
|
|
def clear_all(): |
|
""" Resets inputs, outputs, states, status, but keeps log view """ |
|
|
|
initial_log_content = read_log_file() |
|
return None, None, [], [], "generated", "Interface cleared.", "View Mask", [], initial_log_content |
|
|
|
|
|
if __name__ == "__main__": |
|
initialize_log_file() |
|
|
|
app = gr.Blocks(css=".gradio-container { max-width: 95% !important; }") |
|
with app: |
|
gr.Markdown("# Image Background Removal (Segmentation) with Logging") |
|
gr.Markdown("Test ONNX models, view performance logs.") |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
gr.Markdown("### Model Selection") |
|
model_repo_input = gr.Textbox(value=model_repo_default, label="Hugging Face Repository") |
|
model_filename_dropdown = gr.Dropdown( |
|
choices=default_onnx_files_with_size, |
|
value=default_onnx_files_with_size[0] if default_onnx_files_with_size else "", |
|
label="ONNX Model File (.onnx)" |
|
) |
|
update_btn = gr.Button("π Update/Load Model") |
|
model_status_textbox = gr.Textbox(label="Status", value="Initial model loaded." if rmbg_model else "ERROR: Initial model failed to load.", interactive=False, lines=2) |
|
|
|
gr.Markdown("#### Source Image") |
|
input_img = gr.Image(label="Upload Image", type="numpy") |
|
|
|
with gr.Row(): |
|
run_btn = gr.Button("βΆοΈ Run Background Removal", variant="primary") |
|
clear_btn = gr.Button("ποΈ Clear Inputs/Outputs") |
|
|
|
|
|
with gr.Column(scale=3): |
|
gr.Markdown("#### Output Image") |
|
output_img = gr.Image(label="Output", image_mode="RGBA", format="png", type="numpy") |
|
toggle_btn = gr.Button("View Mask") |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("### Processing History") |
|
history_gallery = gr.Gallery(label="Generated Image History", show_label=False, columns=8, object_fit="contain", height="auto") |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("### Processing Log (`processing_log.csv`)") |
|
|
|
log_display = gr.Code( |
|
value=read_log_file(), |
|
label="Log Viewer", |
|
lines=10, |
|
interactive=False |
|
) |
|
|
|
|
|
|
|
|
|
output_pair_state = gr.State([]) |
|
view_state = gr.State("generated") |
|
history_state = gr.State([]) |
|
|
|
|
|
model_repo_input.submit(fn=update_onnx_files, inputs=model_repo_input, outputs=model_filename_dropdown) |
|
model_repo_input.blur(fn=update_onnx_files, inputs=model_repo_input, outputs=model_filename_dropdown) |
|
update_btn.click(fn=update_model, inputs=[model_repo_input, model_filename_dropdown], outputs=model_status_textbox) |
|
|
|
|
|
run_btn.click( |
|
fn=process_and_update, |
|
inputs=[input_img, model_repo_input, model_filename_dropdown, history_state], |
|
outputs=[output_img, output_pair_state, history_state, view_state, model_status_textbox, log_display] |
|
) |
|
|
|
toggle_btn.click(fn=toggle_view, inputs=[view_state, output_pair_state], outputs=[output_img, view_state, toggle_btn]) |
|
|
|
|
|
clear_btn.click( |
|
fn=clear_all, |
|
outputs=[input_img, output_img, output_pair_state, history_state, view_state, model_status_textbox, toggle_btn, history_gallery, log_display] |
|
) |
|
|
|
|
|
|
|
|
|
history_state.change(fn=lambda history: history, inputs=history_state, outputs=history_gallery) |
|
|
|
app.launch(debug=True) |