|
import gc |
|
import os |
|
import re |
|
import time |
|
from pathlib import Path |
|
import hashlib |
|
|
|
import torch |
|
import transformers |
|
from accelerate import infer_auto_device_map, init_empty_weights |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
) |
|
|
|
import modules.shared as shared |
|
from modules import llama_attn_hijack, sampler_hijack |
|
from modules.logging_colors import logger |
|
from modules.models_settings import infer_loader |
|
|
|
transformers.logging.set_verbosity_error() |
|
|
|
local_rank = None |
|
if shared.args.deepspeed: |
|
import deepspeed |
|
from transformers.deepspeed import ( |
|
HfDeepSpeedConfig, |
|
is_deepspeed_zero3_enabled |
|
) |
|
|
|
from modules.deepspeed_parameters import generate_ds_config |
|
|
|
|
|
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) |
|
world_size = int(os.getenv("WORLD_SIZE", "1")) |
|
torch.cuda.set_device(local_rank) |
|
deepspeed.init_distributed() |
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) |
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
sampler_hijack.hijack_samplers() |
|
|
|
|
|
def load_model(model_name, loader=None): |
|
logger.info(f"Loading {model_name}...") |
|
t0 = time.time() |
|
|
|
shared.is_seq2seq = False |
|
load_func_map = { |
|
'Transformers': huggingface_loader, |
|
'AutoGPTQ': AutoGPTQ_loader, |
|
'GPTQ-for-LLaMa': GPTQ_loader, |
|
'llama.cpp': llamacpp_loader, |
|
'llamacpp_HF': llamacpp_HF_loader, |
|
'RWKV': RWKV_loader, |
|
'ExLlama': ExLlama_loader, |
|
'ExLlama_HF': ExLlama_HF_loader |
|
} |
|
|
|
p = Path(model_name) |
|
if p.exists(): |
|
model_name = p.parts[-1] |
|
|
|
if loader is None: |
|
if shared.args.loader is not None: |
|
loader = shared.args.loader |
|
else: |
|
loader = infer_loader(model_name) |
|
if loader is None: |
|
logger.error('The path to the model does not exist. Exiting.') |
|
return None, None |
|
|
|
shared.args.loader = loader |
|
output = load_func_map[loader](model_name) |
|
if type(output) is tuple: |
|
model, tokenizer = output |
|
else: |
|
model = output |
|
if model is None: |
|
return None, None |
|
else: |
|
tokenizer = load_tokenizer(model_name, model) |
|
|
|
|
|
if any((shared.args.xformers, shared.args.sdp_attention)): |
|
llama_attn_hijack.hijack_llama_attention() |
|
|
|
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n") |
|
return model, tokenizer |
|
|
|
|
|
def load_tokenizer(model_name, model): |
|
tokenizer = None |
|
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") |
|
if any(s in model_name.lower() for s in ['gpt-4chan', 'gpt4chan']) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): |
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) |
|
elif path_to_model.exists(): |
|
try: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
path_to_model, |
|
trust_remote_code=shared.args.trust_remote_code, |
|
use_fast=False |
|
) |
|
except ValueError: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
path_to_model, |
|
trust_remote_code=shared.args.trust_remote_code, |
|
use_fast=True |
|
) |
|
|
|
if tokenizer.__class__.__name__ == 'LlamaTokenizer': |
|
pairs = [ |
|
['tokenizer_config.json', '516c6167c884793a738c440e29ccb80c15e1493ffc965affc69a1a8ddef4572a'], |
|
['special_tokens_map.json', 'ff3b4a612c4e447acb02d40071bddd989fe0da87eb5b7fe0dbadfc4f74de7531'] |
|
] |
|
|
|
for pair in pairs: |
|
p = path_to_model / pair[0] |
|
if p.exists(): |
|
with open(p, "rb") as f: |
|
bytes = f.read() |
|
|
|
file_hash = hashlib.sha256(bytes).hexdigest() |
|
if file_hash != pair[1]: |
|
logger.warning(f"{p} is different from the original LlamaTokenizer file. It is either customized or outdated.") |
|
|
|
return tokenizer |
|
|
|
|
|
def huggingface_loader(model_name): |
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
if 'chatglm' in model_name.lower(): |
|
LoaderClass = AutoModel |
|
else: |
|
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) |
|
if config.to_dict().get("is_encoder_decoder", False): |
|
LoaderClass = AutoModelForSeq2SeqLM |
|
shared.is_seq2seq = True |
|
else: |
|
LoaderClass = AutoModelForCausalLM |
|
|
|
|
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]): |
|
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code) |
|
if torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
model = model.to(device) |
|
else: |
|
model = model.cuda() |
|
|
|
|
|
elif shared.args.deepspeed: |
|
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16) |
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] |
|
model.module.eval() |
|
logger.info(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}") |
|
|
|
|
|
else: |
|
params = { |
|
"low_cpu_mem_usage": True, |
|
"trust_remote_code": shared.args.trust_remote_code |
|
} |
|
|
|
if not any((shared.args.cpu, torch.cuda.is_available(), torch.backends.mps.is_available())): |
|
logger.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.") |
|
shared.args.cpu = True |
|
|
|
if shared.args.cpu: |
|
params["torch_dtype"] = torch.float32 |
|
else: |
|
params["device_map"] = 'auto' |
|
if shared.args.load_in_4bit: |
|
|
|
|
|
|
|
quantization_config_params = { |
|
'load_in_4bit': True, |
|
'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None, |
|
'bnb_4bit_quant_type': shared.args.quant_type, |
|
'bnb_4bit_use_double_quant': shared.args.use_double_quant, |
|
} |
|
|
|
logger.warning("Using the following 4-bit params: " + str(quantization_config_params)) |
|
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params) |
|
|
|
elif shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)): |
|
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) |
|
elif shared.args.load_in_8bit: |
|
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) |
|
elif shared.args.bf16: |
|
params["torch_dtype"] = torch.bfloat16 |
|
else: |
|
params["torch_dtype"] = torch.float16 |
|
|
|
params['max_memory'] = get_max_memory_dict() |
|
if shared.args.disk: |
|
params["offload_folder"] = shared.args.disk_cache_dir |
|
|
|
checkpoint = Path(f'{shared.args.model_dir}/{model_name}') |
|
if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto': |
|
config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=shared.args.trust_remote_code) |
|
with init_empty_weights(): |
|
model = LoaderClass.from_config(config, trust_remote_code=shared.args.trust_remote_code) |
|
|
|
model.tie_weights() |
|
params['device_map'] = infer_auto_device_map( |
|
model, |
|
dtype=torch.int8, |
|
max_memory=params['max_memory'], |
|
no_split_module_classes=model._no_split_modules |
|
) |
|
|
|
model = LoaderClass.from_pretrained(checkpoint, **params) |
|
|
|
return model |
|
|
|
|
|
def RWKV_loader(model_name): |
|
from modules.RWKV import RWKVModel, RWKVTokenizer |
|
|
|
model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda") |
|
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir)) |
|
return model, tokenizer |
|
|
|
|
|
def llamacpp_loader(model_name): |
|
from modules.llamacpp_model import LlamaCppModel |
|
|
|
path = Path(f'{shared.args.model_dir}/{model_name}') |
|
if path.is_file(): |
|
model_file = path |
|
else: |
|
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0] |
|
|
|
logger.info(f"llama.cpp weights detected: {model_file}\n") |
|
model, tokenizer = LlamaCppModel.from_pretrained(model_file) |
|
return model, tokenizer |
|
|
|
|
|
def llamacpp_HF_loader(model_name): |
|
from modules.llamacpp_hf import LlamacppHF |
|
|
|
for fname in ["oobabooga_llama-tokenizer", "llama-tokenizer"]: |
|
path = Path(f'{shared.args.model_dir}/{fname}') |
|
if path.exists(): |
|
break |
|
else: |
|
logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.") |
|
return None, None |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
path, |
|
trust_remote_code=shared.args.trust_remote_code, |
|
use_fast=False |
|
) |
|
|
|
model = LlamacppHF.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
|
|
def GPTQ_loader(model_name): |
|
|
|
|
|
if shared.args.monkey_patch: |
|
logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.") |
|
from modules.monkey_patch_gptq_lora import load_model_llama |
|
|
|
model, _ = load_model_llama(model_name) |
|
|
|
|
|
else: |
|
import modules.GPTQ_loader |
|
|
|
model = modules.GPTQ_loader.load_quantized(model_name) |
|
|
|
return model |
|
|
|
|
|
def AutoGPTQ_loader(model_name): |
|
import modules.AutoGPTQ_loader |
|
|
|
return modules.AutoGPTQ_loader.load_quantized(model_name) |
|
|
|
|
|
def ExLlama_loader(model_name): |
|
from modules.exllama import ExllamaModel |
|
|
|
model, tokenizer = ExllamaModel.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
|
|
def ExLlama_HF_loader(model_name): |
|
from modules.exllama_hf import ExllamaHF |
|
|
|
return ExllamaHF.from_pretrained(model_name) |
|
|
|
|
|
def get_max_memory_dict(): |
|
max_memory = {} |
|
if shared.args.gpu_memory: |
|
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) |
|
for i in range(len(memory_map)): |
|
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] |
|
|
|
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' |
|
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory |
|
|
|
|
|
|
|
elif shared.args.auto_devices: |
|
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) |
|
suggestion = round((total_mem - 1000) / 1000) * 1000 |
|
if total_mem - suggestion < 800: |
|
suggestion -= 1000 |
|
|
|
suggestion = int(round(suggestion / 1000)) |
|
logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") |
|
max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'} |
|
|
|
return max_memory if len(max_memory) > 0 else None |
|
|
|
|
|
def clear_torch_cache(): |
|
gc.collect() |
|
if not shared.args.cpu: |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def unload_model(): |
|
shared.model = shared.tokenizer = None |
|
shared.lora_names = [] |
|
shared.model_dirty_from_training = False |
|
clear_torch_cache() |
|
|
|
|
|
def reload_model(): |
|
unload_model() |
|
shared.model, shared.tokenizer = load_model(shared.model_name) |
|
|