|
|
|
import sys |
|
import numpy as np |
|
import librosa |
|
from functools import lru_cache |
|
import time |
|
|
|
|
|
|
|
@lru_cache |
|
def load_audio(fname): |
|
a, _ = librosa.load(fname, sr=16000) |
|
return a |
|
|
|
def load_audio_chunk(fname, beg, end): |
|
audio = load_audio(fname) |
|
beg_s = int(beg*16000) |
|
end_s = int(end*16000) |
|
return audio[beg_s:end_s] |
|
|
|
|
|
|
|
|
|
class ASRBase: |
|
|
|
sep = " " |
|
|
|
|
|
def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr): |
|
self.logfile = logfile |
|
|
|
self.transcribe_kargs = {} |
|
if lan == "auto": |
|
self.original_language = None |
|
else: |
|
self.original_language = lan |
|
|
|
self.model = self.load_model(modelsize, cache_dir, model_dir) |
|
|
|
|
|
def load_model(self, modelsize, cache_dir): |
|
raise NotImplemented("must be implemented in the child class") |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
raise NotImplemented("must be implemented in the child class") |
|
|
|
def use_vad(self): |
|
raise NotImplemented("must be implemented in the child class") |
|
|
|
|
|
|
|
class FasterWhisperASR(ASRBase): |
|
"""Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version. |
|
""" |
|
|
|
sep = "" |
|
|
|
def load_model(self, modelsize=None, cache_dir=None, model_dir=None): |
|
from faster_whisper import WhisperModel |
|
if model_dir is not None: |
|
print(f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.",file=self.logfile) |
|
model_size_or_path = model_dir |
|
elif modelsize is not None: |
|
model_size_or_path = modelsize |
|
else: |
|
raise ValueError("modelsize or model_dir parameter must be set") |
|
|
|
|
|
|
|
model = WhisperModel(model_size_or_path, device="cuda", compute_type="float16", download_root=cache_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return model |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
|
|
|
|
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs) |
|
|
|
|
|
return list(segments) |
|
|
|
def ts_words(self, segments): |
|
o = [] |
|
for segment in segments: |
|
for word in segment.words: |
|
|
|
w = word.word |
|
t = (word.start, word.end, w) |
|
o.append(t) |
|
return o |
|
|
|
def segments_end_ts(self, res): |
|
return [s.end for s in res] |
|
|
|
def use_vad(self): |
|
self.transcribe_kargs["vad_filter"] = True |
|
|
|
def set_translate_task(self): |
|
self.transcribe_kargs["task"] = "translate" |
|
|
|
|
|
|
|
class HypothesisBuffer: |
|
|
|
def __init__(self, logfile=sys.stderr): |
|
self.commited_in_buffer = [] |
|
self.buffer = [] |
|
self.new = [] |
|
|
|
self.last_commited_time = 0 |
|
self.last_commited_word = None |
|
|
|
self.logfile = logfile |
|
|
|
def insert(self, new, offset): |
|
|
|
|
|
|
|
new = [(a+offset,b+offset,t) for a,b,t in new] |
|
self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1] |
|
|
|
if len(self.new) >= 1: |
|
a,b,t = self.new[0] |
|
if abs(a - self.last_commited_time) < 1: |
|
if self.commited_in_buffer: |
|
|
|
cn = len(self.commited_in_buffer) |
|
nn = len(self.new) |
|
for i in range(1,min(min(cn,nn),5)+1): |
|
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1]) |
|
tail = " ".join(self.new[j-1][2] for j in range(1,i+1)) |
|
if c == tail: |
|
print("removing last",i,"words:",file=self.logfile) |
|
for j in range(i): |
|
print("\t",self.new.pop(0),file=self.logfile) |
|
break |
|
|
|
def flush(self): |
|
|
|
|
|
commit = [] |
|
while self.new: |
|
na, nb, nt = self.new[0] |
|
|
|
if len(self.buffer) == 0: |
|
break |
|
|
|
if nt == self.buffer[0][2]: |
|
commit.append((na,nb,nt)) |
|
self.last_commited_word = nt |
|
self.last_commited_time = nb |
|
self.buffer.pop(0) |
|
self.new.pop(0) |
|
else: |
|
break |
|
self.buffer = self.new |
|
self.new = [] |
|
self.commited_in_buffer.extend(commit) |
|
return commit |
|
|
|
def pop_commited(self, time): |
|
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time: |
|
self.commited_in_buffer.pop(0) |
|
|
|
def complete(self): |
|
return self.buffer |
|
|
|
class OnlineASRProcessor: |
|
|
|
SAMPLING_RATE = 16000 |
|
|
|
def __init__(self, asr, tokenizer=None, buffer_trimming=("segment", 15), logfile=sys.stderr): |
|
"""asr: WhisperASR object |
|
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer. It can be None, if "segment" buffer trimming option is used, then tokenizer is not used at all. |
|
("segment", 15) |
|
buffer_trimming: a pair of (option, seconds), where option is either "sentence" or "segment", and seconds is a number. Buffer is trimmed if it is longer than "seconds" threshold. Default is the most recommended option. |
|
logfile: where to store the log. |
|
""" |
|
self.asr = asr |
|
self.tokenizer = tokenizer |
|
self.logfile = logfile |
|
|
|
self.init() |
|
|
|
self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming |
|
|
|
def init(self): |
|
"""run this when starting or restarting processing""" |
|
self.audio_buffer = np.array([],dtype=np.float32) |
|
self.buffer_time_offset = 0 |
|
|
|
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile) |
|
self.commited = [] |
|
self.last_chunked_at = 0 |
|
|
|
self.silence_iters = 0 |
|
|
|
def insert_audio_chunk(self, audio): |
|
self.audio_buffer = np.append(self.audio_buffer, audio) |
|
|
|
def prompt(self): |
|
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer. |
|
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons. |
|
""" |
|
k = max(0,len(self.commited)-1) |
|
while k > 0 and self.commited[k-1][1] > self.last_chunked_at: |
|
k -= 1 |
|
|
|
p = self.commited[:k] |
|
p = [t for _,_,t in p] |
|
prompt = [] |
|
l = 0 |
|
while p and l < 200: |
|
x = p.pop(-1) |
|
l += len(x)+1 |
|
prompt.append(x) |
|
non_prompt = self.commited[k:] |
|
return self.asr.sep.join(prompt[::-1]), self.asr.sep.join(t for _,_,t in non_prompt) |
|
|
|
def process_iter(self): |
|
"""Runs on the current audio buffer. |
|
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, ""). |
|
The non-emty text is confirmed (committed) partial transcript. |
|
""" |
|
|
|
prompt, non_prompt = self.prompt() |
|
print("PROMPT:", prompt, file=self.logfile) |
|
print("CONTEXT:", non_prompt, file=self.logfile) |
|
print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=self.logfile) |
|
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt) |
|
|
|
|
|
tsw = self.asr.ts_words(res) |
|
|
|
self.transcript_buffer.insert(tsw, self.buffer_time_offset) |
|
o = self.transcript_buffer.flush() |
|
self.commited.extend(o) |
|
print(">>>>COMPLETE NOW:",self.to_flush(o),file=self.logfile,flush=True) |
|
print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=self.logfile,flush=True) |
|
|
|
|
|
|
|
if o and self.buffer_trimming_way == "sentence": |
|
if len(self.audio_buffer)/self.SAMPLING_RATE > self.buffer_trimming_sec: |
|
self.chunk_completed_sentence() |
|
|
|
|
|
if self.buffer_trimming_way == "segment": |
|
s = self.buffer_trimming_sec |
|
else: |
|
s = 30 |
|
|
|
if len(self.audio_buffer)/self.SAMPLING_RATE > s: |
|
self.chunk_completed_segment(res) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"chunking segment",file=self.logfile) |
|
|
|
|
|
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=self.logfile) |
|
return self.to_flush(o) |
|
|
|
def chunk_completed_sentence(self): |
|
if self.commited == []: return |
|
print(self.commited,file=self.logfile) |
|
sents = self.words_to_sentences(self.commited) |
|
for s in sents: |
|
print("\t\tSENT:",s,file=self.logfile) |
|
if len(sents) < 2: |
|
return |
|
while len(sents) > 2: |
|
sents.pop(0) |
|
|
|
chunk_at = sents[-2][1] |
|
|
|
print(f"--- sentence chunked at {chunk_at:2.2f}",file=self.logfile) |
|
self.chunk_at(chunk_at) |
|
|
|
def chunk_completed_segment(self, res): |
|
if self.commited == []: return |
|
|
|
ends = self.asr.segments_end_ts(res) |
|
|
|
t = self.commited[-1][1] |
|
|
|
if len(ends) > 1: |
|
|
|
e = ends[-2]+self.buffer_time_offset |
|
while len(ends) > 2 and e > t: |
|
ends.pop(-1) |
|
e = ends[-2]+self.buffer_time_offset |
|
if e <= t: |
|
print(f"--- segment chunked at {e:2.2f}",file=self.logfile) |
|
self.chunk_at(e) |
|
else: |
|
print(f"--- last segment not within commited area",file=self.logfile) |
|
else: |
|
print(f"--- not enough segments to chunk",file=self.logfile) |
|
|
|
|
|
|
|
|
|
|
|
def chunk_at(self, time): |
|
"""trims the hypothesis and audio buffer at "time" |
|
""" |
|
self.transcript_buffer.pop_commited(time) |
|
cut_seconds = time - self.buffer_time_offset |
|
self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):] |
|
self.buffer_time_offset = time |
|
self.last_chunked_at = time |
|
|
|
def words_to_sentences(self, words): |
|
"""Uses self.tokenizer for sentence segmentation of words. |
|
Returns: [(beg,end,"sentence 1"),...] |
|
""" |
|
|
|
cwords = [w for w in words] |
|
t = " ".join(o[2] for o in cwords) |
|
s = self.tokenizer.split(t) |
|
out = [] |
|
while s: |
|
beg = None |
|
end = None |
|
sent = s.pop(0).strip() |
|
fsent = sent |
|
while cwords: |
|
b,e,w = cwords.pop(0) |
|
w = w.strip() |
|
if beg is None and sent.startswith(w): |
|
beg = b |
|
elif end is None and sent == w: |
|
end = e |
|
out.append((beg,end,fsent)) |
|
break |
|
sent = sent[len(w):].strip() |
|
return out |
|
|
|
def finish(self): |
|
"""Flush the incomplete text when the whole processing ends. |
|
Returns: the same format as self.process_iter() |
|
""" |
|
o = self.transcript_buffer.complete() |
|
f = self.to_flush(o) |
|
print("last, noncommited:",f,file=self.logfile) |
|
return f |
|
|
|
|
|
def to_flush(self, sents, sep=None, offset=0, ): |
|
|
|
|
|
|
|
if sep is None: |
|
sep = self.asr.sep |
|
t = sep.join(s[2] for s in sents) |
|
if len(sents) == 0: |
|
b = None |
|
e = None |
|
else: |
|
b = offset + sents[0][0] |
|
e = offset + sents[-1][1] |
|
return (b,e,t) |
|
|
|
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(",") |
|
|
|
def create_tokenizer(lan): |
|
"""returns an object that has split function that works like the one of MosesTokenizer""" |
|
|
|
assert lan in WHISPER_LANG_CODES, "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES) |
|
|
|
if lan == "uk": |
|
import tokenize_uk |
|
class UkrainianTokenizer: |
|
def split(self, text): |
|
return tokenize_uk.tokenize_sents(text) |
|
return UkrainianTokenizer() |
|
|
|
|
|
if lan in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split(): |
|
from mosestokenizer import MosesTokenizer |
|
return MosesTokenizer(lan) |
|
|
|
|
|
if lan in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split(): |
|
print(f"{lan} code is not supported by wtpsplit. Going to use None lang_code option.", file=sys.stderr) |
|
lan = None |
|
|
|
from wtpsplit import WtP |
|
|
|
wtp = WtP("wtp-canine-s-12l-no-adapters") |
|
class WtPtok: |
|
def split(self, sent): |
|
return wtp.split(sent, lang_code=lan) |
|
return WtPtok() |
|
|
|
|