sanchit-gandhi HF staff commited on
Commit
d347764
·
1 Parent(s): 8ff3567

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from datasets import load_dataset
5
+
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+
8
+
9
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
+
11
+ # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
+
14
+ # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
+
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+
20
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
+
23
+
24
+ def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
+ return outputs["text"]
27
+
28
+
29
+ def synthesise(text):
30
+ inputs = processor(text=text, return_tensors="pt")
31
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
+ return speech.cpu()
33
+
34
+
35
+ def speech_to_speech_translation(audio):
36
+ translated_text = translate(audio)
37
+ synthesised_speech = synthesise(translated_text)
38
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
+ return 16000, synthesised_speech
40
+
41
+
42
+ demo = gr.Interface(
43
+ fn=speech_to_speech_translation,
44
+ inputs=gr.Audio(type="filepath"),
45
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
46
+ examples=[["./example.wav"]],
47
+ )
48
+ demo.launch()