|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from transformers import pipeline, VitsModel |
|
|
|
from transformers import WhisperTokenizer, GenerationConfig |
|
from transformers import pipeline, VitsModel, AutoTokenizer, AutoTokenizer |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-medium") |
|
generation_config = GenerationConfig.from_pretrained("openai/whisper-medium") |
|
|
|
generation_config.forced_decoder_ids |
|
|
|
tokenizer.decode(generation_config.forced_decoder_ids[1][1]) |
|
|
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-medium", device=device) |
|
|
|
|
|
|
|
|
|
vist_model = VitsModel.from_pretrained("facebook/mms-tts-spa") |
|
vist_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-spa") |
|
|
|
|
|
|
|
model = SpeechT5ForTextToSpeech.from_pretrained( |
|
"juangtzi/speecht5_finetuned_voxpopuli_es" |
|
) |
|
checkpoint = "microsoft/speecht5_tts" |
|
processor = SpeechT5Processor.from_pretrained(checkpoint) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
speaker_embeddings2 = np.load('speaker_embeddings.npy') |
|
speaker_embeddings2 = torch.tensor(speaker_embeddings2) |
|
print(speaker_embeddings2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def translate(audio): |
|
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"}) |
|
print(outputs["text"]) |
|
return outputs["text"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def synthesise(text): |
|
print(text) |
|
inputs = vist_tokenizer(text, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = vist_model(**inputs).waveform[0] |
|
return output |
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Spanish. |
|
|
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
examples=[["./example.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |
|
|