youtube-music-transcribe / mt3 /metrics_utils.py
juancopi81's picture
Add t5x and mt3 models
b100e1c
raw
history blame
7.44 kB
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for transcription metrics."""
import collections
import functools
from typing import Any, Callable, Mapping, Optional, Sequence, Tuple, TypeVar
from mt3 import event_codec
from mt3 import note_sequences
from mt3 import run_length_encoding
import note_seq
import numpy as np
import pretty_midi
import sklearn
S = TypeVar('S')
T = TypeVar('T')
CombineExamplesFunctionType = Callable[[Sequence[Mapping[str, Any]]],
Mapping[str, Any]]
def _group_predictions_by_id(
predictions: Sequence[Mapping[str, T]]
) -> Mapping[str, Sequence[T]]:
predictions_by_id = collections.defaultdict(list)
for pred in predictions:
predictions_by_id[pred['unique_id']].append(pred)
return predictions_by_id
def combine_predictions_by_id(
predictions: Sequence[Mapping[str, Any]],
combine_predictions_fn: CombineExamplesFunctionType
) -> Mapping[str, Mapping[str, Any]]:
"""Concatenate predicted examples, grouping by ID and sorting by time."""
predictions_by_id = _group_predictions_by_id(predictions)
return {
id: combine_predictions_fn(preds)
for id, preds in predictions_by_id.items()
}
def decode_and_combine_predictions(
predictions: Sequence[Mapping[str, Any]],
init_state_fn: Callable[[], S],
begin_segment_fn: Callable[[S], None],
decode_tokens_fn: Callable[[S, Sequence[int], int, Optional[int]],
Tuple[int, int]],
flush_state_fn: Callable[[S], T]
) -> Tuple[T, int, int]:
"""Decode and combine a sequence of predictions to a full result.
For time-based events, this usually means concatenation.
Args:
predictions: List of predictions, each of which is a dictionary containing
estimated tokens ('est_tokens') and start time ('start_time') fields.
init_state_fn: Function that takes no arguments and returns an initial
decoding state.
begin_segment_fn: Function that updates the decoding state at the beginning
of a segment.
decode_tokens_fn: Function that takes a decoding state, estimated tokens
(for a single segment), start time, and max time, and processes the
tokens, updating the decoding state in place. Also returns the number of
invalid and dropped events for the segment.
flush_state_fn: Function that flushes the final decoding state into the
result.
Returns:
result: The full combined decoding.
total_invalid_events: Total number of invalid event tokens across all
predictions.
total_dropped_events: Total number of dropped event tokens across all
predictions.
"""
sorted_predictions = sorted(predictions, key=lambda pred: pred['start_time'])
state = init_state_fn()
total_invalid_events = 0
total_dropped_events = 0
for pred_idx, pred in enumerate(sorted_predictions):
begin_segment_fn(state)
# Depending on the audio token hop length, each symbolic token could be
# associated with multiple audio frames. Since we split up the audio frames
# into segments for prediction, this could lead to overlap. To prevent
# overlap issues, ensure that the current segment does not make any
# predictions for the time period covered by the subsequent segment.
max_decode_time = None
if pred_idx < len(sorted_predictions) - 1:
max_decode_time = sorted_predictions[pred_idx + 1]['start_time']
invalid_events, dropped_events = decode_tokens_fn(
state, pred['est_tokens'], pred['start_time'], max_decode_time)
total_invalid_events += invalid_events
total_dropped_events += dropped_events
return flush_state_fn(state), total_invalid_events, total_dropped_events
def event_predictions_to_ns(
predictions: Sequence[Mapping[str, Any]], codec: event_codec.Codec,
encoding_spec: note_sequences.NoteEncodingSpecType
) -> Mapping[str, Any]:
"""Convert a sequence of predictions to a combined NoteSequence."""
ns, total_invalid_events, total_dropped_events = decode_and_combine_predictions(
predictions=predictions,
init_state_fn=encoding_spec.init_decoding_state_fn,
begin_segment_fn=encoding_spec.begin_decoding_segment_fn,
decode_tokens_fn=functools.partial(
run_length_encoding.decode_events,
codec=codec,
decode_event_fn=encoding_spec.decode_event_fn),
flush_state_fn=encoding_spec.flush_decoding_state_fn)
# Also concatenate raw inputs from all predictions.
sorted_predictions = sorted(predictions, key=lambda pred: pred['start_time'])
raw_inputs = np.concatenate(
[pred['raw_inputs'] for pred in sorted_predictions], axis=0)
start_times = [pred['start_time'] for pred in sorted_predictions]
return {
'raw_inputs': raw_inputs,
'start_times': start_times,
'est_ns': ns,
'est_invalid_events': total_invalid_events,
'est_dropped_events': total_dropped_events,
}
def get_prettymidi_pianoroll(ns: note_seq.NoteSequence, fps: float,
is_drum: bool):
"""Convert NoteSequence to pianoroll through pretty_midi."""
for note in ns.notes:
if is_drum or note.end_time - note.start_time < 0.05:
# Give all drum notes a fixed length, and all others a min length
note.end_time = note.start_time + 0.05
pm = note_seq.note_sequence_to_pretty_midi(ns)
end_time = pm.get_end_time()
cc = [
# all sound off
pretty_midi.ControlChange(number=120, value=0, time=end_time),
# all notes off
pretty_midi.ControlChange(number=123, value=0, time=end_time)
]
pm.instruments[0].control_changes = cc
if is_drum:
# If inst.is_drum is set, pretty_midi will return an all zero pianoroll.
for inst in pm.instruments:
inst.is_drum = False
pianoroll = pm.get_piano_roll(fs=fps)
return pianoroll
def frame_metrics(ref_pianoroll: np.ndarray,
est_pianoroll: np.ndarray,
velocity_threshold: int) -> Tuple[float, float, float]:
"""Frame Precision, Recall, and F1."""
# Pad to same length
if ref_pianoroll.shape[1] > est_pianoroll.shape[1]:
diff = ref_pianoroll.shape[1] - est_pianoroll.shape[1]
est_pianoroll = np.pad(est_pianoroll, [(0, 0), (0, diff)], mode='constant')
elif est_pianoroll.shape[1] > ref_pianoroll.shape[1]:
diff = est_pianoroll.shape[1] - ref_pianoroll.shape[1]
ref_pianoroll = np.pad(ref_pianoroll, [(0, 0), (0, diff)], mode='constant')
# For ref, remove any notes that are too quiet (consistent with Cerberus.)
ref_frames_bool = ref_pianoroll > velocity_threshold
# For est, keep all predicted notes.
est_frames_bool = est_pianoroll > 0
precision, recall, f1, _ = sklearn.metrics.precision_recall_fscore_support(
ref_frames_bool.flatten(),
est_frames_bool.flatten(),
labels=[True, False])
return precision[0], recall[0], f1[0]