youtube-music-transcribe / t5x /checkpoint_importer_test.py
juancopi81's picture
Add t5x and mt3 models
b100e1c
raw
history blame
3.13 kB
# Copyright 2022 The T5X Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for t5x.checkpoint_importer."""
import json
import os
from absl import flags
from absl.testing import absltest
import jax
import numpy as np
from t5x import checkpoint_importer
import tensorflow as tf
class CheckpointImporterTest(absltest.TestCase):
def test_rel_embeddings_shared_layers(self):
# This represents a ckpt where the Mesh TensorFlow's
# transformer_layers.SelfAttention.relative_attention_type = "bias_shared",
# i.e., the same relative attention parameters are shared by all layers
# within the (en|de)coder.
ckpt_data = {
'encoder/block_000/layer_000/SelfAttention/relative_attention_bias':
1,
'decoder/block_000/layer_000/SelfAttention/relative_attention_bias':
2,
'decoder/block_000/layer_000/SelfAttention/relative_attention_bias_slot_v':
3,
}
t5_data = checkpoint_importer.t5_importer.apply(ckpt_data)
t5_data = checkpoint_importer._maybe_correct_relpos_bias(t5_data)
expected = {
'target/encoder/relpos_bias/rel_embedding': 1,
'target/decoder/relpos_bias/rel_embedding': 2,
'state/param_states/decoder/relpos_bias/rel_embedding/v': 3,
}
self.assertEqual(t5_data, expected)
def test_rel_embeddings_per_layer(self):
# This represents a ckpt where the Mesh TensorFlow's
# transformer_layers.SelfAttention.relative_attention_type = "bias", i.e.,
# each layer has its own relative attention parameters.
ckpt_data = {
'encoder/block_000/layer_000/SelfAttention/relative_attention_bias':
1,
'encoder/block_001/layer_000/SelfAttention/relative_attention_bias':
2,
'decoder/block_000/layer_000/SelfAttention/relative_attention_bias':
3,
'decoder/block_000/layer_000/SelfAttention/relative_attention_bias_slot_v':
4,
'decoder/block_011/layer_000/SelfAttention/relative_attention_bias':
5
}
t5_data = checkpoint_importer.t5_importer.apply(ckpt_data)
t5_data = checkpoint_importer._maybe_correct_relpos_bias(t5_data)
expected = {
'target/encoder/layers_0/relpos_bias/rel_embedding': 1,
'target/encoder/layers_1/relpos_bias/rel_embedding': 2,
'target/decoder/layers_0/relpos_bias/rel_embedding': 3,
'state/param_states/decoder/layers_0/relpos_bias/rel_embedding/v': 4,
'target/decoder/layers_11/relpos_bias/rel_embedding': 5,
}
self.assertEqual(t5_data, expected)
if __name__ == '__main__':
absltest.main()