Spaces:
Build error
Build error
# Copyright 2022 The T5X Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Minimal decoder-only Transformer model.""" | |
from typing import Any, Optional, Sequence | |
from flax import linen as nn | |
from flax import struct | |
import jax.numpy as jnp | |
from t5x.examples.decoder_only import layers | |
class TransformerConfig: | |
"""Global hyperparameters used to minimize obnoxious kwarg plumbing.""" | |
vocab_size: int | |
# Activation dtypes. | |
dtype: Any = jnp.float32 | |
emb_dim: int = 512 | |
num_heads: int = 8 | |
num_layers: int = 6 | |
head_dim: int = 64 | |
mlp_dim: int = 2048 | |
# Activation functions are retrieved from Flax. | |
mlp_activations: Sequence[str] = ('relu',) | |
dropout_rate: float = 0.1 | |
# If `True`, the embedding weights are used in the decoder output layer. | |
logits_via_embedding: bool = False | |
class DecoderLayer(nn.Module): | |
"""Transformer decoder layer.""" | |
config: TransformerConfig | |
def __call__(self, | |
inputs: jnp.ndarray, | |
decoder_mask: Optional[jnp.ndarray] = None, | |
deterministic: bool = False, | |
decode: bool = False, | |
max_decode_length: Optional[int] = None, | |
prefill: bool = False, | |
prefill_lengths: Optional[jnp.ndarray] = None): | |
"""Applies decoder block module.""" | |
cfg = self.config | |
# Relative position embedding as attention biases. | |
l = max_decode_length if decode and max_decode_length else inputs.shape[-2] | |
# During decoding, this module will be called with `decode=True` first to | |
# initialize the decoder cache, including a cached relpos bias. The prefill | |
# codepath will call this once again with `decode=False`, which is slightly | |
# wasteful but generally harmless. During subsequent decode steps, this will | |
# be called with `decode=True` and will reuse the cached bias. This | |
# significantly improves performance during decoding with many decode steps. | |
decoder_bias = layers.RelativePositionBiases( | |
num_buckets=32, | |
max_distance=128, | |
num_heads=cfg.num_heads, | |
dtype=cfg.dtype, | |
embedding_init=nn.initializers.variance_scaling(1.0, 'fan_avg', | |
'uniform'), | |
name='relpos_bias')( | |
l, l, False, decode=decode) | |
# `inputs` is layer input with a shape [batch, length, emb_dim]. | |
x = layers.LayerNorm( | |
dtype=cfg.dtype, name='pre_self_attention_layer_norm')( | |
inputs) | |
# Self-attention block | |
x = layers.MultiHeadDotProductAttention( | |
num_heads=cfg.num_heads, | |
dtype=cfg.dtype, | |
head_dim=cfg.head_dim, | |
dropout_rate=cfg.dropout_rate, | |
name='self_attention')( | |
x, | |
x, | |
decoder_mask, | |
decoder_bias, | |
deterministic=deterministic, | |
decode=decode, | |
prefill=prefill, | |
prefill_lengths=prefill_lengths) | |
x = nn.Dropout( | |
rate=cfg.dropout_rate, | |
broadcast_dims=(-2,), | |
name='post_self_attention_dropout')( | |
x, deterministic=deterministic) | |
x = x + inputs | |
# MLP block. | |
y = layers.LayerNorm(dtype=cfg.dtype, name='pre_mlp_layer_norm')(x) | |
y = layers.MlpBlock( | |
intermediate_dim=cfg.mlp_dim, | |
activations=cfg.mlp_activations, | |
intermediate_dropout_rate=cfg.dropout_rate, | |
dtype=cfg.dtype, | |
name='mlp', | |
)(y, deterministic=deterministic) | |
y = nn.Dropout( | |
rate=cfg.dropout_rate, broadcast_dims=(-2,), name='post_mlp_dropout')( | |
y, deterministic=deterministic) | |
y = y + x | |
return y | |
class Decoder(nn.Module): | |
"""A stack of decoder layers.""" | |
config: TransformerConfig | |
def __call__(self, | |
decoder_input_tokens: jnp.ndarray, | |
decoder_target_tokens: jnp.ndarray, | |
decoder_segment_ids: Optional[jnp.ndarray] = None, | |
decoder_positions: Optional[jnp.ndarray] = None, | |
decoder_causal_attention: Optional[jnp.ndarray] = None, | |
*, | |
enable_dropout: bool = True, | |
decode: bool = False, | |
max_decode_length: Optional[int] = None, | |
prefill: Optional[bool] = None, | |
prefill_lengths: Optional[jnp.ndarray] = None): | |
"""Applies LanguageModel on the inputs. | |
For a decoder-only architecture with the notion of "prefix", e.g., a prefix | |
LM where the prefix corresponds to the "inputs" of a supervised dataset, we | |
perform the "prefill" operation to fill the autoregressive cache | |
corresponding to the prefix region in one go. Then the autoregressive | |
decoding starts after the prefix. This makes the decoding process more | |
efficient. In addition, it gives an option to use bidirectional attention in | |
the prefix region because the cache is filled simultaneously. | |
Args: | |
decoder_input_tokens: input token to the decoder. | |
decoder_target_tokens: target token to the decoder. | |
decoder_segment_ids: decoder segmentation info for packed examples. | |
decoder_positions: decoder subsequence positions for packed examples. | |
decoder_causal_attention: a binary mask indicating the portion of the | |
sequence to apply bidirectional attention to instead of causal. As an | |
example, useful to specify the "inputs" portion of a concatenated | |
sequence for a prefix LM. | |
enable_dropout: enables dropout if set to True. | |
decode: whether to prepare and use an autoregressive cache as opposed to | |
using teacher-forcing. | |
max_decode_length: maximum sequence length to be decoded. | |
prefill: whether to run a partial sequence to prefill the cache. | |
prefill_lengths: an array of shape [batch] denoting the length of each | |
partial sequence we are filling in the cache. | |
Returns: | |
logits array. | |
""" | |
cfg = self.config | |
deterministic = not enable_dropout | |
assert decoder_input_tokens.ndim == 2 # [batch, len] | |
if decode: | |
decoder_mask = None | |
else: | |
decoder_mask = layers.make_decoder_mask( | |
decoder_target_tokens=decoder_target_tokens, | |
dtype=cfg.dtype, | |
decoder_causal_attention=decoder_causal_attention, | |
decoder_segment_ids=decoder_segment_ids) | |
embedding = layers.Embed( | |
num_embeddings=cfg.vocab_size, | |
features=cfg.emb_dim, | |
dtype=cfg.dtype, | |
attend_dtype=jnp.float32, # for logit training stability | |
embedding_init=nn.initializers.normal(stddev=1.0), | |
one_hot=True, | |
name='token_embedder') | |
y = embedding(decoder_input_tokens.astype('int32')) | |
y = nn.Dropout( | |
rate=cfg.dropout_rate, broadcast_dims=(-2,), name='input_dropout')( | |
y, deterministic=deterministic) | |
y = y.astype(cfg.dtype) | |
for lyr in range(cfg.num_layers): | |
# [batch, length, emb_dim] -> [batch, length, emb_dim] | |
y = DecoderLayer( | |
config=cfg, name=f'layers_{lyr}')( | |
y, | |
decoder_mask=decoder_mask, | |
deterministic=deterministic, | |
decode=decode, | |
max_decode_length=max_decode_length, | |
prefill=prefill, | |
prefill_lengths=prefill_lengths) | |
y = layers.LayerNorm(dtype=cfg.dtype, name='decoder_norm')(y) | |
y = nn.Dropout( | |
rate=cfg.dropout_rate, broadcast_dims=(-2,), name='output_dropout')( | |
y, deterministic=deterministic) | |
# [batch, length, emb_dim] -> [batch, length, vocab_size] | |
if cfg.logits_via_embedding: | |
# Use the transpose of embedding matrix for the logit transform. | |
logits = embedding.attend(y) | |
# Correctly normalize pre-softmax logits for this shared case. | |
logits = logits / jnp.sqrt(y.shape[-1]) | |
else: | |
# Use a separate dense layer for the logit transform. | |
logits = layers.DenseGeneral( | |
cfg.vocab_size, | |
dtype=jnp.float32, # Use float32 for stabiliity. | |
kernel_axes=('embed', 'vocab'), | |
name='logits_dense')( | |
y) | |
return logits | |
# TODO(hwchung): remove this after figuring out the name scope issue. | |
class DecoderWrapper(nn.Module): | |
"""Thin wrapper for the outer "decoder/" name scope.""" | |
config: TransformerConfig | |
def setup(self): | |
self.decoder = Decoder(self.config, name='decoder') | |
def __call__(self, *args, **kwargs): | |
return self.decoder(*args, **kwargs) | |