Spaces:
Build error
Build error
# Defaults for infer.py. | |
# | |
# | |
# You must also include a binding for MODEL. | |
# | |
# Required to be set: | |
# | |
# - MIXTURE_OR_TASK_NAME: The SeqIO Task/Mixture to use for inference | |
# - TASK_FEATURE_LENGTHS: The lengths per key in the SeqIO Task to trim features | |
# to. | |
# - CHECKPOINT_PATH: The model checkpoint to use for inference | |
# - INFER_OUTPUT_DIR: The dir to write results to. | |
# | |
# | |
# Commonly overridden options: | |
# | |
# - infer.mode | |
# - infer.checkpoint_period | |
# - infer.shard_id | |
# - infer.num_shards | |
# - DatasetConfig.split | |
# - DatasetConfig.batch_size | |
# - DatasetConfig.use_cached | |
# - RestoreCheckpointConfig.is_tensorflow | |
# - RestoreCheckpointConfig.mode | |
# - PjitPartitioner.num_partitions | |
from __gin__ import dynamic_registration | |
import __main__ as infer_script | |
from t5x import partitioning | |
from t5x import utils | |
# Must be overridden | |
MIXTURE_OR_TASK_NAME = %gin.REQUIRED | |
TASK_FEATURE_LENGTHS = %gin.REQUIRED | |
CHECKPOINT_PATH = %gin.REQUIRED | |
INFER_OUTPUT_DIR = %gin.REQUIRED | |
# DEPRECATED: Import the this module in your gin file. | |
MIXTURE_OR_TASK_MODULE = None | |
infer_script.infer: | |
mode = 'predict' | |
model = %MODEL # imported from separate gin file | |
output_dir = %INFER_OUTPUT_DIR | |
dataset_cfg = @utils.DatasetConfig() | |
partitioner = @partitioning.PjitPartitioner() | |
restore_checkpoint_cfg = @utils.RestoreCheckpointConfig() | |
checkpoint_period = 100 | |
shard_id = 0 | |
num_shards = 1 | |
partitioning.PjitPartitioner: | |
num_partitions = 1 | |
logical_axis_rules = @partitioning.standard_logical_axis_rules() | |
utils.DatasetConfig: | |
mixture_or_task_name = %MIXTURE_OR_TASK_NAME | |
module = %MIXTURE_OR_TASK_MODULE | |
task_feature_lengths = %TASK_FEATURE_LENGTHS | |
use_cached = False | |
split = 'test' | |
batch_size = 32 | |
shuffle = False | |
seed = 0 | |
pack = False | |
utils.RestoreCheckpointConfig: | |
path = %CHECKPOINT_PATH | |
mode = 'specific' | |
dtype = 'bfloat16' | |