Spaces:
Build error
Build error
# Copyright 2022 The T5X Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tests for network.""" | |
import os | |
from absl import flags | |
from absl.testing import absltest | |
from absl.testing import parameterized | |
import jax | |
import numpy as np | |
import seqio | |
from t5x import adafactor | |
from t5x import models | |
from t5x import test_utils | |
from t5x.examples.t5 import network | |
# Parse absl flags test_srcdir and test_tmpdir. | |
jax.config.parse_flags_with_absl() | |
FLAGS = flags.FLAGS | |
def get_test_model(emb_dim, | |
head_dim, | |
num_heads, | |
mlp_dim, | |
dtype='float32', | |
vocab_size=32128, | |
num_encoder_layers=2, | |
num_decoder_layers=2): | |
config = network.T5Config( | |
num_encoder_layers=num_encoder_layers, | |
num_decoder_layers=num_decoder_layers, | |
vocab_size=vocab_size, | |
dropout_rate=0, | |
emb_dim=emb_dim, | |
num_heads=num_heads, | |
head_dim=head_dim, | |
mlp_dim=mlp_dim, | |
dtype=dtype, | |
mlp_activations=('gelu', 'linear')) | |
module = network.Transformer(config=config) | |
vocab = seqio.test_utils.sentencepiece_vocab() | |
optimizer_def = adafactor.Adafactor() | |
return models.EncoderDecoderModel( | |
module, vocab, vocab, optimizer_def=optimizer_def) | |
class NetworkTest(parameterized.TestCase): | |
def setUp(self): | |
super().setUp() | |
batch_size, max_decode_len, input_len = 2, 3, 4 | |
self.input_shapes = { | |
'encoder_input_tokens': (batch_size, input_len), | |
'decoder_input_tokens': (batch_size, max_decode_len) | |
} | |
np.random.seed(42) | |
self.batch = { | |
'encoder_input_tokens': | |
np.random.randint(3, 10, size=(batch_size, input_len)), | |
'decoder_input_tokens': | |
np.random.randint(3, 10, size=(batch_size, max_decode_len)), | |
'decoder_target_tokens': | |
np.random.randint(3, 10, size=(batch_size, max_decode_len)) | |
} | |
def test_t5_1_1_regression(self): | |
np.random.seed(0) | |
batch_size, max_decode_len, input_len = 2, 3, 4 | |
batch = { | |
'encoder_input_tokens': | |
np.random.randint(3, 10, size=(batch_size, input_len)), | |
'decoder_input_tokens': | |
np.random.randint(3, 10, size=(batch_size, max_decode_len)), | |
'decoder_target_tokens': | |
np.random.randint(3, 10, size=(batch_size, max_decode_len)) | |
} | |
model = get_test_model( | |
emb_dim=13, | |
head_dim=64, | |
num_heads=8, | |
mlp_dim=2048, | |
vocab_size=10, | |
num_encoder_layers=3) | |
params = model.get_initial_variables( | |
jax.random.PRNGKey(42), self.input_shapes)['params'] | |
loss, _ = jax.jit(model.loss_fn)(params, batch, jax.random.PRNGKey(1)) | |
self.assertAlmostEqual(loss, 18.088945, delta=0.05) | |
predicted, scores = model.predict_batch_with_aux(params, batch) | |
np.testing.assert_array_equal(predicted, [[7, 1, 0], [1, 0, 0]]) | |
np.testing.assert_allclose( | |
scores['scores'], [-3.0401115, -1.9265753], rtol=1e-3) | |
if __name__ == '__main__': | |
absltest.main() | |