juancopi81's picture
Add t5x and mt3 models
b100e1c
raw
history blame
32.5 kB
# Copyright 2022 The MT3 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dense attention classes and mask/weighting functions."""
# pylint: disable=attribute-defined-outside-init,g-bare-generic
import dataclasses
import functools
import operator
from typing import Any, Callable, Iterable, Optional, Sequence, Tuple, Union
from flax import linen as nn
from flax.linen import partitioning as nn_partitioning
import jax
from jax import lax
from jax import random
import jax.numpy as jnp
import numpy as np
# from flax.linen.partitioning import param_with_axes, with_sharding_constraint
param_with_axes = nn_partitioning.param_with_axes
with_sharding_constraint = nn_partitioning.with_sharding_constraint
# Type annotations
Array = jnp.ndarray
DType = jnp.dtype
PRNGKey = jnp.ndarray
Shape = Iterable[int]
Activation = Callable[..., Array]
# Parameter initializers.
Initializer = Callable[[PRNGKey, Shape, DType], Array]
default_embed_init = nn.initializers.variance_scaling(
1.0, 'fan_in', 'normal', out_axis=0)
def sinusoidal(min_scale: float = 1.0,
max_scale: float = 10000.0,
dtype: DType = jnp.float32) -> Initializer:
"""Creates 1D Sinusoidal Position Embedding Initializer.
Args:
min_scale: Minimum frequency-scale in sine grating.
max_scale: Maximum frequency-scale in sine grating.
dtype: The DType of the returned values.
Returns:
The sinusoidal initialization function.
"""
def init(key: PRNGKey, shape: Shape, dtype: DType = dtype) -> Array:
"""Sinusoidal init."""
del key
if dtype != np.float32:
raise ValueError('The sinusoidal initializer only supports float32.')
if len(list(shape)) != 2:
raise ValueError(
f'Expected a 2D shape (max_len, features), but got {shape}.')
max_len, features = shape
pe = np.zeros((max_len, features), dtype=dtype)
position = np.arange(0, max_len)[:, np.newaxis]
scale_factor = -np.log(max_scale / min_scale) / (features // 2 - 1)
div_term = min_scale * np.exp(np.arange(0, features // 2) * scale_factor)
pe[:, :features // 2] = np.sin(position * div_term)
pe[:, features // 2:2 * (features // 2)] = np.cos(position * div_term)
return jnp.array(pe)
return init
def dot_product_attention(query: Array,
key: Array,
value: Array,
bias: Optional[Array] = None,
dropout_rng: Optional[PRNGKey] = None,
dropout_rate: float = 0.,
deterministic: bool = False,
dtype: DType = jnp.float32,
float32_logits: bool = False):
"""Computes dot-product attention given query, key, and value.
This is the core function for applying attention based on
https://arxiv.org/abs/1706.03762. It calculates the attention weights given
query and key and combines the values using the attention weights.
Args:
query: queries for calculating attention with shape of `[batch, q_length,
num_heads, qk_depth_per_head]`.
key: keys for calculating attention with shape of `[batch, kv_length,
num_heads, qk_depth_per_head]`.
value: values to be used in attention with shape of `[batch, kv_length,
num_heads, v_depth_per_head]`.
bias: bias for the attention weights. This should be broadcastable to the
shape `[batch, num_heads, q_length, kv_length]` This can be used for
incorporating causal masks, padding masks, proximity bias, etc.
dropout_rng: JAX PRNGKey: to be used for dropout
dropout_rate: dropout rate
deterministic: bool, deterministic or not (to apply dropout)
dtype: the dtype of the computation (default: float32)
float32_logits: bool, if True then compute logits in float32 to avoid
numerical issues with bfloat16.
Returns:
Output of shape `[batch, length, num_heads, v_depth_per_head]`.
"""
assert key.ndim == query.ndim == value.ndim, 'q, k, v must have same rank.'
assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], (
'q, k, v batch dims must match.')
assert query.shape[-2] == key.shape[-2] == value.shape[-2], (
'q, k, v num_heads must match.')
assert key.shape[-3] == value.shape[-3], 'k, v lengths must match.'
assert query.shape[-1] == key.shape[-1], 'q, k depths must match.'
# Casting logits and softmax computation for float32 for model stability.
if float32_logits:
query = query.astype(jnp.float32)
key = key.astype(jnp.float32)
# `attn_weights`: [batch, num_heads, q_length, kv_length]
attn_weights = jnp.einsum('bqhd,bkhd->bhqk', query, key)
# Apply attention bias: masking, dropout, proximity bias, etc.
if bias is not None:
attn_weights = attn_weights + bias.astype(attn_weights.dtype)
# Normalize the attention weights across `kv_length` dimension.
attn_weights = jax.nn.softmax(attn_weights).astype(dtype)
# Apply attention dropout.
if not deterministic and dropout_rate > 0.:
keep_prob = 1.0 - dropout_rate
# T5 broadcasts along the "length" dim, but unclear which one that
# corresponds to in positional dimensions here, assuming query dim.
dropout_shape = list(attn_weights.shape)
dropout_shape[-2] = 1
keep = random.bernoulli(dropout_rng, keep_prob, dropout_shape)
keep = jnp.broadcast_to(keep, attn_weights.shape)
multiplier = (
keep.astype(attn_weights.dtype) / jnp.asarray(keep_prob, dtype=dtype))
attn_weights = attn_weights * multiplier
# Take the linear combination of `value`.
return jnp.einsum('bhqk,bkhd->bqhd', attn_weights, value)
dynamic_vector_slice_in_dim = jax.vmap(
lax.dynamic_slice_in_dim, in_axes=(None, 0, None, None))
class MultiHeadDotProductAttention(nn.Module):
"""Multi-head dot-product attention.
Attributes:
num_heads: number of attention heads. Features (i.e. inputs_q.shape[-1])
should be divisible by the number of heads.
head_dim: dimension of each head.
dtype: the dtype of the computation.
dropout_rate: dropout rate
kernel_init: initializer for the kernel of the Dense layers.
float32_logits: bool, if True then compute logits in float32 to avoid
numerical issues with bfloat16.
"""
num_heads: int
head_dim: int
dtype: DType = jnp.float32
dropout_rate: float = 0.
kernel_init: Initializer = nn.initializers.variance_scaling(
1.0, 'fan_in', 'normal')
float32_logits: bool = False # computes logits in float32 for stability.
@nn.compact
def __call__(self,
inputs_q: Array,
inputs_kv: Array,
mask: Optional[Array] = None,
bias: Optional[Array] = None,
*,
decode: bool = False,
deterministic: bool = False) -> Array:
"""Applies multi-head dot product attention on the input data.
Projects the inputs into multi-headed query, key, and value vectors,
applies dot-product attention and project the results to an output vector.
There are two modes: decoding and non-decoding (e.g., training). The mode is
determined by `decode` argument. For decoding, this method is called twice,
first to initialize the cache and then for an actual decoding process. The
two calls are differentiated by the presence of 'cached_key' in the variable
dict. In the cache initialization stage, the cache variables are initialized
as zeros and will be filled in the subsequent decoding process.
In the cache initialization call, `inputs_q` has a shape [batch, length,
q_features] and `inputs_kv`: [batch, length, kv_features]. During the
incremental decoding stage, query, key and value all have the shape [batch,
1, qkv_features] corresponding to a single step.
Args:
inputs_q: input queries of shape `[batch, q_length, q_features]`.
inputs_kv: key/values of shape `[batch, kv_length, kv_features]`.
mask: attention mask of shape `[batch, num_heads, q_length, kv_length]`.
bias: attention bias of shape `[batch, num_heads, q_length, kv_length]`.
decode: Whether to prepare and use an autoregressive cache.
deterministic: Disables dropout if set to True.
Returns:
output of shape `[batch, length, q_features]`.
"""
projection = functools.partial(
DenseGeneral,
axis=-1,
features=(self.num_heads, self.head_dim),
kernel_axes=('embed', 'joined_kv'),
dtype=self.dtype)
# NOTE: T5 does not explicitly rescale the attention logits by
# 1/sqrt(depth_kq)! This is folded into the initializers of the
# linear transformations, which is equivalent under Adafactor.
depth_scaling = jnp.sqrt(self.head_dim).astype(self.dtype)
query_init = lambda *args: self.kernel_init(*args) / depth_scaling
# Project inputs_q to multi-headed q/k/v
# dimensions are then [batch, length, num_heads, head_dim]
query = projection(kernel_init=query_init, name='query')(inputs_q)
key = projection(kernel_init=self.kernel_init, name='key')(inputs_kv)
value = projection(kernel_init=self.kernel_init, name='value')(inputs_kv)
query = with_sharding_constraint(query, ('batch', 'length', 'heads', 'kv'))
key = with_sharding_constraint(key, ('batch', 'length', 'heads', 'kv'))
value = with_sharding_constraint(value, ('batch', 'length', 'heads', 'kv'))
if decode:
# Detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable('cache', 'cached_key')
# The key and value have dimension [batch, length, num_heads, head_dim],
# but we cache them as [batch, num_heads, head_dim, length] as a TPU
# fusion optimization. This also enables the "scatter via one-hot
# broadcast" trick, which means we do a one-hot broadcast instead of a
# scatter/gather operations, resulting in a 3-4x speedup in practice.
swap_dims = lambda x: x[:-3] + tuple(x[i] for i in [-2, -1, -3])
cached_key = self.variable('cache', 'cached_key', jnp.zeros,
swap_dims(key.shape), key.dtype)
cached_value = self.variable('cache', 'cached_value', jnp.zeros,
swap_dims(value.shape), value.dtype)
cache_index = self.variable('cache', 'cache_index',
lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
batch, num_heads, head_dim, length = (cached_key.value.shape)
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
# Sanity shape check of cached key against input query.
expected_shape = (batch, 1, num_heads, head_dim)
if expected_shape != query.shape:
raise ValueError('Autoregressive cache shape error, '
'expected query shape %s instead got %s.' %
(expected_shape, query.shape))
# Create a OHE of the current index. NOTE: the index is increased below.
cur_index = cache_index.value
one_hot_indices = jax.nn.one_hot(cur_index, length, dtype=key.dtype)
# In order to update the key, value caches with the current key and
# value, we move the length axis to the back, similar to what we did for
# the cached ones above.
# Note these are currently the key and value of a single position, since
# we feed one position at a time.
one_token_key = jnp.moveaxis(key, -3, -1)
one_token_value = jnp.moveaxis(value, -3, -1)
# Update key, value caches with our new 1d spatial slices.
# We implement an efficient scatter into the cache via one-hot
# broadcast and addition.
key = cached_key.value + one_token_key * one_hot_indices
value = cached_value.value + one_token_value * one_hot_indices
cached_key.value = key
cached_value.value = value
cache_index.value = cache_index.value + 1
# Move the keys and values back to their original shapes.
key = jnp.moveaxis(key, -1, -3)
value = jnp.moveaxis(value, -1, -3)
# Causal mask for cached decoder self-attention: our single query
# position should only attend to those key positions that have already
# been generated and cached, not the remaining zero elements.
mask = combine_masks(
mask,
jnp.broadcast_to(
jnp.arange(length) <= cur_index,
# (1, 1, length) represent (head dim, query length, key length)
# query length is 1 because during decoding we deal with one
# index.
# The same mask is applied to all batch elements and heads.
(batch, 1, 1, length)))
# Grab the correct relative attention bias during decoding. This is
# only required during single step decoding.
if bias is not None:
# The bias is a full attention matrix, but during decoding we only
# have to take a slice of it.
# This is equivalent to bias[..., cur_index:cur_index+1, :].
bias = dynamic_vector_slice_in_dim(
jnp.squeeze(bias, axis=0), jnp.reshape(cur_index, (-1)), 1, -2)
# Convert the boolean attention mask to an attention bias.
if mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
mask > 0,
jnp.full(mask.shape, 0.).astype(self.dtype),
jnp.full(mask.shape, -1e10).astype(self.dtype))
else:
attention_bias = None
# Add provided bias term (e.g. relative position embedding).
if bias is not None:
attention_bias = combine_biases(attention_bias, bias)
dropout_rng = None
if not deterministic and self.dropout_rate > 0.:
dropout_rng = self.make_rng('dropout')
# Apply attention.
x = dot_product_attention(
query,
key,
value,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout_rate,
deterministic=deterministic,
dtype=self.dtype,
float32_logits=self.float32_logits)
# Back to the original inputs dimensions.
out = DenseGeneral(
features=inputs_q.shape[-1], # output dim is set to the input dim.
axis=(-2, -1),
kernel_init=self.kernel_init,
kernel_axes=('joined_kv', 'embed'),
dtype=self.dtype,
name='out')(
x)
return out
def _normalize_axes(axes: Iterable[int], ndim: int) -> Tuple[int]:
# A tuple by convention. len(axes_tuple) then also gives the rank efficiently.
return tuple([ax if ax >= 0 else ndim + ax for ax in axes])
def _canonicalize_tuple(x):
if isinstance(x, Iterable):
return tuple(x)
else:
return (x,)
#------------------------------------------------------------------------------
# DenseGeneral for attention layers.
#------------------------------------------------------------------------------
class DenseGeneral(nn.Module):
"""A linear transformation (without bias) with flexible axes.
Attributes:
features: tuple with numbers of output features.
axis: tuple with axes to apply the transformation on.
dtype: the dtype of the computation (default: float32).
kernel_init: initializer function for the weight matrix.
"""
features: Union[Iterable[int], int]
axis: Union[Iterable[int], int] = -1
dtype: DType = jnp.float32
kernel_init: Initializer = nn.initializers.variance_scaling(
1.0, 'fan_in', 'truncated_normal')
kernel_axes: Tuple[str, ...] = ()
@nn.compact
def __call__(self, inputs: Array) -> Array:
"""Applies a linear transformation to the inputs along multiple dimensions.
Args:
inputs: The nd-array to be transformed.
Returns:
The transformed input.
"""
features = _canonicalize_tuple(self.features)
axis = _canonicalize_tuple(self.axis)
inputs = jnp.asarray(inputs, self.dtype)
axis = _normalize_axes(axis, inputs.ndim)
kernel_shape = tuple([inputs.shape[ax] for ax in axis]) + features
kernel_param_shape = (np.prod([inputs.shape[ax] for ax in axis]),
np.prod(features))
kernel = param_with_axes(
'kernel',
self.kernel_init,
kernel_param_shape,
jnp.float32,
axes=self.kernel_axes)
kernel = jnp.asarray(kernel, self.dtype)
kernel = jnp.reshape(kernel, kernel_shape)
contract_ind = tuple(range(0, len(axis)))
return lax.dot_general(inputs, kernel, ((axis, contract_ind), ((), ())))
def _convert_to_activation_function(
fn_or_string: Union[str, Callable]) -> Callable:
"""Convert a string to an activation function."""
if fn_or_string == 'linear':
return lambda x: x
elif isinstance(fn_or_string, str):
return getattr(nn, fn_or_string)
elif callable(fn_or_string):
return fn_or_string
else:
raise ValueError("don't know how to convert %s to an activation function" %
(fn_or_string,))
class MlpBlock(nn.Module):
"""Transformer MLP / feed-forward block.
Attributes:
intermediate_dim: Shared dimension of hidden layers.
activations: Type of activations for each layer. Each element is either
'linear', a string function name in flax.linen, or a function.
kernel_init: Kernel function, passed to the dense layers.
deterministic: Whether the dropout layers should be deterministic.
intermediate_dropout_rate: Dropout rate used after the intermediate layers.
dtype: Type for the dense layer.
"""
intermediate_dim: int = 2048
activations: Sequence[Union[str, Callable]] = ('relu',)
kernel_init: Initializer = nn.initializers.variance_scaling(
1.0, 'fan_in', 'truncated_normal')
intermediate_dropout_rate: float = 0.1
dtype: Any = jnp.float32
@nn.compact
def __call__(self, inputs, decode: bool = False, deterministic: bool = False):
"""Applies Transformer MlpBlock module."""
# Iterate over specified MLP input activation functions.
# e.g. ('relu',) or ('gelu', 'linear') for gated-gelu.
activations = []
for idx, act_fn in enumerate(self.activations):
dense_name = 'wi' if len(self.activations) == 1 else f'wi_{idx}'
x = DenseGeneral(
self.intermediate_dim,
dtype=self.dtype,
kernel_init=self.kernel_init,
kernel_axes=('embed', 'mlp'),
name=dense_name)(
inputs)
x = _convert_to_activation_function(act_fn)(x)
activations.append(x)
# Take elementwise product of above intermediate activations.
x = functools.reduce(operator.mul, activations)
# Apply dropout and final dense output projection.
x = nn.Dropout(
rate=self.intermediate_dropout_rate, broadcast_dims=(-2,))(
x, deterministic=deterministic) # Broadcast along length.
x = with_sharding_constraint(x, ('batch', 'length', 'mlp'))
output = DenseGeneral(
inputs.shape[-1],
dtype=self.dtype,
kernel_init=self.kernel_init,
kernel_axes=('mlp', 'embed'),
name='wo')(
x)
return output
class Embed(nn.Module):
"""A parameterized function from integers [0, n) to d-dimensional vectors.
Attributes:
num_embeddings: number of embeddings.
features: number of feature dimensions for each embedding.
dtype: the dtype of the embedding vectors (default: float32).
embedding_init: embedding initializer.
one_hot: performs the gather with a one-hot contraction rather than a true
gather. This is currently needed for SPMD partitioning.
"""
num_embeddings: int
features: int
cast_input_dtype: Optional[DType] = None
dtype: DType = jnp.float32
attend_dtype: Optional[DType] = None
embedding_init: Initializer = default_embed_init
one_hot: bool = False
embedding: Array = dataclasses.field(init=False)
def setup(self):
self.embedding = param_with_axes(
'embedding',
self.embedding_init, (self.num_embeddings, self.features),
jnp.float32,
axes=('vocab', 'embed'))
def __call__(self, inputs: Array) -> Array:
"""Embeds the inputs along the last dimension.
Args:
inputs: input data, all dimensions are considered batch dimensions.
Returns:
Output which is embedded input data. The output shape follows the input,
with an additional `features` dimension appended.
"""
if self.cast_input_dtype:
inputs = inputs.astype(self.cast_input_dtype)
if not jnp.issubdtype(inputs.dtype, jnp.integer):
raise ValueError('Input type must be an integer or unsigned integer.')
if self.one_hot:
iota = lax.iota(jnp.int32, self.num_embeddings)
one_hot = jnp.array(inputs[..., jnp.newaxis] == iota, dtype=self.dtype)
output = jnp.dot(one_hot, jnp.asarray(self.embedding, self.dtype))
else:
output = jnp.asarray(self.embedding, self.dtype)[inputs]
output = with_sharding_constraint(output, ('batch', 'length', 'embed'))
return output
def attend(self, query: Array) -> Array:
"""Attend over the embedding using a query array.
Args:
query: array with last dimension equal the feature depth `features` of the
embedding.
Returns:
An array with final dim `num_embeddings` corresponding to the batched
inner-product of the array of query vectors against each embedding.
Commonly used for weight-sharing between embeddings and logit transform
in NLP models.
"""
dtype = self.attend_dtype if self.attend_dtype is not None else self.dtype
return jnp.dot(query, jnp.asarray(self.embedding, dtype).T)
class FixedEmbed(nn.Module):
"""Fixed (not learnable) embeddings specified by the initializer function.
Attributes:
init_fn: The initializer function that defines the embeddings.
max_length: The maximum supported length.
dtype: The DType to use for the embeddings.
"""
features: int
max_length: int = 2048
embedding_init: Initializer = sinusoidal()
dtype: jnp.dtype = jnp.float32
def setup(self):
# The key is set to None because sinusoid init is deterministic.
shape = (self.max_length, self.features)
self.embedding = self.embedding_init(None, shape, self.dtype) # pylint: disable=too-many-function-args
@nn.compact
def __call__(self,
inputs,
*,
decode: bool = False):
"""Returns the fixed position embeddings specified by the initializer.
Args:
inputs: <int>[batch_size, seq_len] input position indices.
decode: True if running in single-position autoregressive decode mode.
Returns:
The fixed position embeddings <float32>[batch_size, seq_len, features].
"""
# We use a cache position index for tracking decoding position.
if decode:
position_embedder_index = self.variable(
'cache', 'position_embedder_index',
lambda: jnp.array(-1, dtype=jnp.uint32))
i = position_embedder_index.value
position_embedder_index.value = i + 1
return jax.lax.dynamic_slice(self.embedding, jnp.array((i, 0)),
np.array((1, self.features)))
return jnp.take(self.embedding, inputs, axis=0)
#------------------------------------------------------------------------------
# T5 Layernorm - no subtraction of mean or bias.
#------------------------------------------------------------------------------
class LayerNorm(nn.Module):
"""T5 Layer normalization operating on the last axis of the input data."""
epsilon: float = 1e-6
dtype: Any = jnp.float32
scale_init: Initializer = nn.initializers.ones
@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:
"""Applies layer normalization on the input."""
x = jnp.asarray(x, jnp.float32)
features = x.shape[-1]
mean2 = jnp.mean(lax.square(x), axis=-1, keepdims=True)
y = jnp.asarray(x * lax.rsqrt(mean2 + self.epsilon), self.dtype)
scale = param_with_axes(
'scale', self.scale_init, (features,), jnp.float32, axes=('embed',))
scale = jnp.asarray(scale, self.dtype)
return y * scale
#------------------------------------------------------------------------------
# Mask-making utility functions.
#------------------------------------------------------------------------------
def make_attention_mask(query_input: Array,
key_input: Array,
pairwise_fn: Callable = jnp.multiply,
extra_batch_dims: int = 0,
dtype: DType = jnp.float32) -> Array:
"""Mask-making helper for attention weights.
In case of 1d inputs (i.e., `[batch, len_q]`, `[batch, len_kv]`, the
attention weights will be `[batch, heads, len_q, len_kv]` and this
function will produce `[batch, 1, len_q, len_kv]`.
Args:
query_input: a batched, flat input of query_length size
key_input: a batched, flat input of key_length size
pairwise_fn: broadcasting elementwise comparison function
extra_batch_dims: number of extra batch dims to add singleton axes for, none
by default
dtype: mask return dtype
Returns:
A `[batch, 1, len_q, len_kv]` shaped mask for 1d attention.
"""
# [batch, len_q, len_kv]
mask = pairwise_fn(
# [batch, len_q] -> [batch, len_q, 1]
jnp.expand_dims(query_input, axis=-1),
# [batch, len_q] -> [batch, 1, len_kv]
jnp.expand_dims(key_input, axis=-2))
# [batch, 1, len_q, len_kv]. This creates the head dim.
mask = jnp.expand_dims(mask, axis=-3)
mask = jnp.expand_dims(mask, axis=tuple(range(extra_batch_dims)))
return mask.astype(dtype)
def make_causal_mask(x: Array,
extra_batch_dims: int = 0,
dtype: DType = jnp.float32) -> Array:
"""Make a causal mask for self-attention.
In case of 1d inputs (i.e., `[batch, len]`, the self-attention weights
will be `[batch, heads, len, len]` and this function will produce a
causal mask of shape `[batch, 1, len, len]`.
Note that a causal mask does not depend on the values of x; it only depends on
the shape. If x has padding elements, they will not be treated in a special
manner.
Args:
x: input array of shape `[batch, len]`
extra_batch_dims: number of batch dims to add singleton axes for, none by
default
dtype: mask return dtype
Returns:
A `[batch, 1, len, len]` shaped causal mask for 1d attention.
"""
idxs = jnp.broadcast_to(jnp.arange(x.shape[-1], dtype=jnp.int32), x.shape)
return make_attention_mask(
idxs,
idxs,
jnp.greater_equal,
extra_batch_dims=extra_batch_dims,
dtype=dtype)
def combine_masks(*masks: Optional[Array], dtype: DType = jnp.float32):
"""Combine attention masks.
Args:
*masks: set of attention mask arguments to combine, some can be None.
dtype: final mask dtype
Returns:
Combined mask, reduced by logical and, returns None if no masks given.
"""
masks = [m for m in masks if m is not None]
if not masks:
return None
assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (
f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}')
mask, *other_masks = masks
for other_mask in other_masks:
mask = jnp.logical_and(mask, other_mask)
return mask.astype(dtype)
def combine_biases(*masks: Optional[Array]):
"""Combine attention biases.
Args:
*masks: set of attention bias arguments to combine, some can be None.
Returns:
Combined mask, reduced by summation, returns None if no masks given.
"""
masks = [m for m in masks if m is not None]
if not masks:
return None
assert all(map(lambda x: x.ndim == masks[0].ndim, masks)), (
f'masks must have same rank: {tuple(map(lambda x: x.ndim, masks))}')
mask, *other_masks = masks
for other_mask in other_masks:
mask = mask + other_mask
return mask
def make_decoder_mask(decoder_target_tokens: Array,
dtype: DType,
decoder_causal_attention: Optional[Array] = None,
decoder_segment_ids: Optional[Array] = None) -> Array:
"""Compute the self-attention mask for a decoder.
Decoder mask is formed by combining a causal mask, a padding mask and an
optional packing mask. If decoder_causal_attention is passed, it makes the
masking non-causal for positions that have value of 1.
A prefix LM is applied to a dataset which has a notion of "inputs" and
"targets", e.g., a machine translation task. The inputs and targets are
concatenated to form a new target. `decoder_target_tokens` is the concatenated
decoder output tokens.
The "inputs" portion of the concatenated sequence can attend to other "inputs"
tokens even for those at a later time steps. In order to control this
behavior, `decoder_causal_attention` is necessary. This is a binary mask with
a value of 1 indicating that the position belonged to "inputs" portion of the
original dataset.
Example:
Suppose we have a dataset with two examples.
ds = [{"inputs": [6, 7], "targets": [8]},
{"inputs": [3, 4], "targets": [5]}]
After the data preprocessing with packing, the two examples are packed into
one example with the following three fields (some fields are skipped for
simplicity).
decoder_target_tokens = [[6, 7, 8, 3, 4, 5, 0]]
decoder_segment_ids = [[1, 1, 1, 2, 2, 2, 0]]
decoder_causal_attention = [[1, 1, 0, 1, 1, 0, 0]]
where each array has [batch, length] shape with batch size being 1. Then,
this function computes the following mask.
mask = [[[[1, 1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]]]]
mask[b, 1, :, :] represents the mask for the example `b` in the batch.
Because mask is for a self-attention layer, the mask's shape is a square of
shape [query length, key length].
mask[b, 1, i, j] = 1 means that the query token at position i can attend to
the key token at position j.
Args:
decoder_target_tokens: decoder output tokens. [batch, length]
dtype: dtype of the output mask.
decoder_causal_attention: a binary mask indicating which position should
only attend to earlier positions in the sequence. Others will attend
bidirectionally. [batch, length]
decoder_segment_ids: decoder segmentation info for packed examples. [batch,
length]
Returns:
the combined decoder mask.
"""
masks = []
# The same mask is applied to all attention heads. So the head dimension is 1,
# i.e., the mask will be broadcast along the heads dim.
# [batch, 1, length, length]
causal_mask = make_causal_mask(decoder_target_tokens, dtype=dtype)
# Positions with value 1 in `decoder_causal_attneition` can attend
# bidirectionally.
if decoder_causal_attention is not None:
# [batch, 1, length, length]
inputs_mask = make_attention_mask(
decoder_causal_attention,
decoder_causal_attention,
jnp.logical_and,
dtype=dtype)
masks.append(jnp.logical_or(causal_mask, inputs_mask).astype(dtype))
else:
masks.append(causal_mask)
# Padding mask.
masks.append(
make_attention_mask(
decoder_target_tokens > 0, decoder_target_tokens > 0, dtype=dtype))
# Packing mask
if decoder_segment_ids is not None:
masks.append(
make_attention_mask(
decoder_segment_ids, decoder_segment_ids, jnp.equal, dtype=dtype))
return combine_masks(*masks, dtype=dtype)