Spaces:
Build error
Build error
juancopi81
commited on
Commit
•
d8fad2b
1
Parent(s):
8f37e44
Initial commit with files
Browse files- .gitignore +1 -0
- README.md +1 -1
- constants.py +133 -0
- main.py +133 -5
- model.py +31 -0
- pyproject.toml +6 -0
- requirements.txt +1 -0
- string_to_notes.py +137 -0
- utils.py +245 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
env/
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Multitrack Midi Music Generator
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: gray
|
6 |
sdk: docker
|
|
|
1 |
---
|
2 |
title: Multitrack Midi Music Generator
|
3 |
+
emoji: 🎵
|
4 |
colorFrom: indigo
|
5 |
colorTo: gray
|
6 |
sdk: docker
|
constants.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SAMPLE_RATE = 44100
|
2 |
+
|
3 |
+
|
4 |
+
GM_INSTRUMENTS = [
|
5 |
+
"Acoustic Grand Piano",
|
6 |
+
"Bright Acoustic Piano",
|
7 |
+
"Electric Grand Piano",
|
8 |
+
"Honky-tonk Piano",
|
9 |
+
"Electric Piano 1",
|
10 |
+
"Electric Piano 2",
|
11 |
+
"Harpsichord",
|
12 |
+
"Clavi",
|
13 |
+
"Celesta",
|
14 |
+
"Glockenspiel",
|
15 |
+
"Music Box",
|
16 |
+
"Vibraphone",
|
17 |
+
"Marimba",
|
18 |
+
"Xylophone",
|
19 |
+
"Tubular Bells",
|
20 |
+
"Dulcimer",
|
21 |
+
"Drawbar Organ",
|
22 |
+
"Percussive Organ",
|
23 |
+
"Rock Organ",
|
24 |
+
"Church Organ",
|
25 |
+
"Reed Organ",
|
26 |
+
"Accordion",
|
27 |
+
"Harmonica",
|
28 |
+
"Tango Accordion",
|
29 |
+
"Acoustic Guitar (nylon)",
|
30 |
+
"Acoustic Guitar (steel)",
|
31 |
+
"Electric Guitar (jazz)",
|
32 |
+
"Electric Guitar (clean)",
|
33 |
+
"Electric Guitar (muted)",
|
34 |
+
"Overdriven Guitar",
|
35 |
+
"Distortion Guitar",
|
36 |
+
"Guitar Harmonics",
|
37 |
+
"Acoustic Bass",
|
38 |
+
"Electric Bass (finger)",
|
39 |
+
"Electric Bass (pick)",
|
40 |
+
"Fretless Bass",
|
41 |
+
"Slap Bass 1",
|
42 |
+
"Slap Bass 2",
|
43 |
+
"Synth Bass 1",
|
44 |
+
"Synth Bass 2",
|
45 |
+
"Violin",
|
46 |
+
"Viola",
|
47 |
+
"Cello",
|
48 |
+
"Contrabass",
|
49 |
+
"Tremolo Strings",
|
50 |
+
"Pizzicato Strings",
|
51 |
+
"Orchestral Harp",
|
52 |
+
"Timpani",
|
53 |
+
"String Ensemble 1",
|
54 |
+
"String Ensemble 2",
|
55 |
+
"Synth Strings 1",
|
56 |
+
"Synth Strings 2",
|
57 |
+
"Choir Aahs",
|
58 |
+
"Voice Oohs",
|
59 |
+
"Synth Choir",
|
60 |
+
"Orchestra Hit",
|
61 |
+
"Trumpet",
|
62 |
+
"Trombone",
|
63 |
+
"Tuba",
|
64 |
+
"Muted Trumpet",
|
65 |
+
"French Horn",
|
66 |
+
"Brass Section",
|
67 |
+
"Synth Brass 1",
|
68 |
+
"Synth Brass 2",
|
69 |
+
"Soprano Sax",
|
70 |
+
"Alto Sax",
|
71 |
+
"Tenor Sax",
|
72 |
+
"Baritone Sax",
|
73 |
+
"Oboe",
|
74 |
+
"English Horn",
|
75 |
+
"Bassoon",
|
76 |
+
"Clarinet",
|
77 |
+
"Piccolo",
|
78 |
+
"Flute",
|
79 |
+
"Recorder",
|
80 |
+
"Pan Flute",
|
81 |
+
"Blown Bottle",
|
82 |
+
"Shakuhachi",
|
83 |
+
"Whistle",
|
84 |
+
"Ocarina",
|
85 |
+
"Lead 1 (square)",
|
86 |
+
"Lead 2 (sawtooth)",
|
87 |
+
"Lead 3 (calliope)",
|
88 |
+
"Lead 4 (chiff)",
|
89 |
+
"Lead 5 (charang)",
|
90 |
+
"Lead 6 (voice)",
|
91 |
+
"Lead 7 (fifths)",
|
92 |
+
"Lead 8 (bass + lead)",
|
93 |
+
"Pad 1 (new age)",
|
94 |
+
"Pad 2 (warm)",
|
95 |
+
"Pad 3 (polysynth)",
|
96 |
+
"Pad 4 (choir)",
|
97 |
+
"Pad 5 (bowed)",
|
98 |
+
"Pad 6 (metallic)",
|
99 |
+
"Pad 7 (halo)",
|
100 |
+
"Pad 8 (sweep)",
|
101 |
+
"FX 1 (rain)",
|
102 |
+
"FX 2 (soundtrack)",
|
103 |
+
"FX 3 (crystal)",
|
104 |
+
"FX 4 (atmosphere)",
|
105 |
+
"FX 5 (brightness)",
|
106 |
+
"FX 6 (goblins)",
|
107 |
+
"FX 7 (echoes)",
|
108 |
+
"FX 8 (sci-fi)",
|
109 |
+
"Sitar",
|
110 |
+
"Banjo",
|
111 |
+
"Shamisen",
|
112 |
+
"Koto",
|
113 |
+
"Kalimba",
|
114 |
+
"Bagpipe",
|
115 |
+
"Fiddle",
|
116 |
+
"Shanai",
|
117 |
+
"Tinkle Bell",
|
118 |
+
"Agogo",
|
119 |
+
"Steel Drums",
|
120 |
+
"Woodblock",
|
121 |
+
"Taiko Drum",
|
122 |
+
"Melodic Tom",
|
123 |
+
"Synth Drum",
|
124 |
+
"Reverse Cymbal",
|
125 |
+
"Guitar Fret Noise",
|
126 |
+
"Breath Noise",
|
127 |
+
"Seashore",
|
128 |
+
"Bird Tweet",
|
129 |
+
"Telephone Ring",
|
130 |
+
"Helicopter",
|
131 |
+
"Applause",
|
132 |
+
"Gunshot",
|
133 |
+
]
|
main.py
CHANGED
@@ -1,13 +1,141 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def run():
|
4 |
-
demo
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
10 |
|
11 |
|
12 |
if __name__ == "__main__":
|
13 |
-
run()
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from utils import (
|
6 |
+
generate_song,
|
7 |
+
remove_last_instrument,
|
8 |
+
regenerate_last_instrument,
|
9 |
+
change_tempo,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
14 |
+
|
15 |
+
DESCRIPTION = """
|
16 |
+
|
17 |
+
# 🎵 Multitrack Midi Generator 🎶
|
18 |
+
This interactive application uses an AI model to generate music sequences based on a chosen genre and various user inputs.
|
19 |
+
|
20 |
+
Features:
|
21 |
+
🎼 Select the genre for the music.
|
22 |
+
🌡️ Use the "Temperature" slider to adjust the randomness of the music generated (higher values will produce more random outputs).
|
23 |
+
⏱️ Adjust the "Tempo" slider to change the speed of the music.
|
24 |
+
🎹 Use the buttons to generate a new song from scratch, continue generation with the current settings, remove the last added instrument, regenerate the last added instrument with a new one, or change the tempo of the current song.
|
25 |
+
Outputs:
|
26 |
+
The app outputs the following:
|
27 |
+
|
28 |
+
🎧 The audio of the generated song.
|
29 |
+
📁 A MIDI file of the song.
|
30 |
+
📊 A plot of the song's sequence.
|
31 |
+
🎸 A list of the generated instruments.
|
32 |
+
📝 The text sequence of the song.
|
33 |
+
Enjoy creating your own AI-generated music! 🎵
|
34 |
+
"""
|
35 |
+
|
36 |
+
genres = ["ROCK", "POP", "OTHER", "R&B/SOUL", "JAZZ", "ELECTRONIC", "RANDOM"]
|
37 |
+
|
38 |
+
demo = gr.Blocks()
|
39 |
+
|
40 |
+
|
41 |
def run():
|
42 |
+
with demo:
|
43 |
+
gr.Markdown(DESCRIPTION)
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column():
|
46 |
+
temp = gr.Slider(
|
47 |
+
minimum=0, maximum=1, step=0.05, value=0.75, label="Temperature"
|
48 |
+
)
|
49 |
+
genre = gr.Dropdown(
|
50 |
+
choices=genres, value="POP", label="Select the genre"
|
51 |
+
)
|
52 |
+
with gr.Row():
|
53 |
+
btn_from_scratch = gr.Button("Start from scratch")
|
54 |
+
btn_continue = gr.Button("Continue Generation")
|
55 |
+
btn_remove_last = gr.Button("Remove last instrument")
|
56 |
+
btn_regenerate_last = gr.Button("Regenerate last instrument")
|
57 |
+
with gr.Column():
|
58 |
+
with gr.Box():
|
59 |
+
audio_output = gr.Video()
|
60 |
+
midi_file = gr.File()
|
61 |
+
with gr.Row():
|
62 |
+
qpm = gr.Slider(
|
63 |
+
minimum=60, maximum=140, step=10, value=120, label="Tempo"
|
64 |
+
)
|
65 |
+
btn_qpm = gr.Button("Change Tempo")
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column():
|
68 |
+
plot_output = gr.Plot()
|
69 |
+
with gr.Column():
|
70 |
+
instruments_output = gr.Markdown("# List of generated instruments")
|
71 |
+
with gr.Row():
|
72 |
+
text_sequence = gr.Text()
|
73 |
+
empty_sequence = gr.Text(visible=False)
|
74 |
+
with gr.Row():
|
75 |
+
num_tokens = gr.Text()
|
76 |
+
btn_from_scratch.click(
|
77 |
+
fn=generate_song,
|
78 |
+
inputs=[genre, temp, empty_sequence, qpm],
|
79 |
+
outputs=[
|
80 |
+
audio_output,
|
81 |
+
midi_file,
|
82 |
+
plot_output,
|
83 |
+
instruments_output,
|
84 |
+
text_sequence,
|
85 |
+
num_tokens,
|
86 |
+
],
|
87 |
+
)
|
88 |
+
btn_continue.click(
|
89 |
+
fn=generate_song,
|
90 |
+
inputs=[genre, temp, text_sequence, qpm],
|
91 |
+
outputs=[
|
92 |
+
audio_output,
|
93 |
+
midi_file,
|
94 |
+
plot_output,
|
95 |
+
instruments_output,
|
96 |
+
text_sequence,
|
97 |
+
num_tokens,
|
98 |
+
],
|
99 |
+
)
|
100 |
+
btn_remove_last.click(
|
101 |
+
fn=remove_last_instrument,
|
102 |
+
inputs=[text_sequence, qpm],
|
103 |
+
outputs=[
|
104 |
+
audio_output,
|
105 |
+
midi_file,
|
106 |
+
plot_output,
|
107 |
+
instruments_output,
|
108 |
+
text_sequence,
|
109 |
+
num_tokens,
|
110 |
+
],
|
111 |
+
)
|
112 |
+
btn_regenerate_last.click(
|
113 |
+
fn=regenerate_last_instrument,
|
114 |
+
inputs=[text_sequence, qpm],
|
115 |
+
outputs=[
|
116 |
+
audio_output,
|
117 |
+
midi_file,
|
118 |
+
plot_output,
|
119 |
+
instruments_output,
|
120 |
+
text_sequence,
|
121 |
+
num_tokens,
|
122 |
+
],
|
123 |
+
)
|
124 |
+
btn_qpm.click(
|
125 |
+
fn=change_tempo,
|
126 |
+
inputs=[text_sequence, qpm],
|
127 |
+
outputs=[
|
128 |
+
audio_output,
|
129 |
+
midi_file,
|
130 |
+
plot_output,
|
131 |
+
instruments_output,
|
132 |
+
text_sequence,
|
133 |
+
num_tokens,
|
134 |
+
],
|
135 |
+
)
|
136 |
|
137 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
138 |
|
139 |
|
140 |
if __name__ == "__main__":
|
141 |
+
run()
|
model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Tuple
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Initialize the model and tokenizer variables as None
|
6 |
+
tokenizer = None
|
7 |
+
model = None
|
8 |
+
|
9 |
+
|
10 |
+
def get_model_and_tokenizer() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
11 |
+
"""
|
12 |
+
Returns the preloaded model and tokenizer. If they haven't been loaded before, loads them.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
tuple: A tuple containing the preloaded model and tokenizer.
|
16 |
+
"""
|
17 |
+
global model, tokenizer
|
18 |
+
if model is None or tokenizer is None:
|
19 |
+
# Set device
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
|
22 |
+
# Load the tokenizer and the model
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("juancopi81/lmd_8bars_tokenizer")
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
"juancopi81/lmd-8bars-2048-epochs20_v3"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Move model to device
|
29 |
+
model = model.to(device)
|
30 |
+
|
31 |
+
return model, tokenizer
|
pyproject.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
exclude = '''
|
3 |
+
(
|
4 |
+
/env
|
5 |
+
)
|
6 |
+
'''
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
note-seq
|
2 |
matplotlib
|
3 |
transformers
|
|
|
1 |
+
gradio
|
2 |
note-seq
|
3 |
matplotlib
|
4 |
transformers
|
string_to_notes.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from note_seq.protobuf.music_pb2 import NoteSequence
|
4 |
+
from note_seq.constants import STANDARD_PPQ
|
5 |
+
|
6 |
+
|
7 |
+
def token_sequence_to_note_sequence(
|
8 |
+
token_sequence: str,
|
9 |
+
qpm: float = 120.0,
|
10 |
+
use_program: bool = True,
|
11 |
+
use_drums: bool = True,
|
12 |
+
instrument_mapper: Optional[dict] = None,
|
13 |
+
only_piano: bool = False,
|
14 |
+
) -> NoteSequence:
|
15 |
+
"""
|
16 |
+
Converts a sequence of tokens into a sequence of notes.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
token_sequence (str): The sequence of tokens to convert.
|
20 |
+
qpm (float, optional): The quarter notes per minute. Defaults to 120.0.
|
21 |
+
use_program (bool, optional): Whether to use program. Defaults to True.
|
22 |
+
use_drums (bool, optional): Whether to use drums. Defaults to True.
|
23 |
+
instrument_mapper (Optional[dict], optional): The instrument mapper. Defaults to None.
|
24 |
+
only_piano (bool, optional): Whether to only use piano. Defaults to False.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
NoteSequence: The resulting sequence of notes.
|
28 |
+
"""
|
29 |
+
if isinstance(token_sequence, str):
|
30 |
+
token_sequence = token_sequence.split()
|
31 |
+
|
32 |
+
note_sequence = empty_note_sequence(qpm)
|
33 |
+
|
34 |
+
# Compute note and bar lengths based on the provided QPM
|
35 |
+
note_length_16th = 0.25 * 60 / qpm
|
36 |
+
bar_length = 4.0 * 60 / qpm
|
37 |
+
|
38 |
+
# Render all notes.
|
39 |
+
current_program = 1
|
40 |
+
current_is_drum = False
|
41 |
+
current_instrument = 0
|
42 |
+
track_count = 0
|
43 |
+
for _, token in enumerate(token_sequence):
|
44 |
+
if token == "PIECE_START":
|
45 |
+
pass
|
46 |
+
elif token == "PIECE_END":
|
47 |
+
break
|
48 |
+
elif token == "TRACK_START":
|
49 |
+
current_bar_index = 0
|
50 |
+
track_count += 1
|
51 |
+
pass
|
52 |
+
elif token == "TRACK_END":
|
53 |
+
pass
|
54 |
+
elif token == "KEYS_START":
|
55 |
+
pass
|
56 |
+
elif token == "KEYS_END":
|
57 |
+
pass
|
58 |
+
elif token.startswith("KEY="):
|
59 |
+
pass
|
60 |
+
elif token.startswith("INST"):
|
61 |
+
instrument = token.split("=")[-1]
|
62 |
+
if instrument != "DRUMS" and use_program:
|
63 |
+
if instrument_mapper is not None:
|
64 |
+
if instrument in instrument_mapper:
|
65 |
+
instrument = instrument_mapper[instrument]
|
66 |
+
current_program = int(instrument)
|
67 |
+
current_instrument = track_count
|
68 |
+
current_is_drum = False
|
69 |
+
if instrument == "DRUMS" and use_drums:
|
70 |
+
current_instrument = 0
|
71 |
+
current_program = 0
|
72 |
+
current_is_drum = True
|
73 |
+
elif token == "BAR_START":
|
74 |
+
current_time = current_bar_index * bar_length
|
75 |
+
current_notes = {}
|
76 |
+
elif token == "BAR_END":
|
77 |
+
current_bar_index += 1
|
78 |
+
pass
|
79 |
+
elif token.startswith("NOTE_ON"):
|
80 |
+
pitch = int(token.split("=")[-1])
|
81 |
+
note = note_sequence.notes.add()
|
82 |
+
note.start_time = current_time
|
83 |
+
note.end_time = current_time + 4 * note_length_16th
|
84 |
+
note.pitch = pitch
|
85 |
+
note.instrument = current_instrument
|
86 |
+
note.program = current_program
|
87 |
+
note.velocity = 80
|
88 |
+
note.is_drum = current_is_drum
|
89 |
+
current_notes[pitch] = note
|
90 |
+
elif token.startswith("NOTE_OFF"):
|
91 |
+
pitch = int(token.split("=")[-1])
|
92 |
+
if pitch in current_notes:
|
93 |
+
note = current_notes[pitch]
|
94 |
+
note.end_time = current_time
|
95 |
+
elif token.startswith("TIME_DELTA"):
|
96 |
+
delta = float(token.split("=")[-1]) * note_length_16th
|
97 |
+
current_time += delta
|
98 |
+
elif token.startswith("DENSITY="):
|
99 |
+
pass
|
100 |
+
elif token == "[PAD]":
|
101 |
+
pass
|
102 |
+
else:
|
103 |
+
pass
|
104 |
+
|
105 |
+
# Make the instruments right.
|
106 |
+
instruments_drums = []
|
107 |
+
for note in note_sequence.notes:
|
108 |
+
pair = [note.program, note.is_drum]
|
109 |
+
if pair not in instruments_drums:
|
110 |
+
instruments_drums += [pair]
|
111 |
+
note.instrument = instruments_drums.index(pair)
|
112 |
+
|
113 |
+
if only_piano:
|
114 |
+
for note in note_sequence.notes:
|
115 |
+
if not note.is_drum:
|
116 |
+
note.instrument = 0
|
117 |
+
note.program = 0
|
118 |
+
|
119 |
+
return note_sequence
|
120 |
+
|
121 |
+
|
122 |
+
def empty_note_sequence(qpm: float = 120.0, total_time: float = 0.0) -> NoteSequence:
|
123 |
+
"""
|
124 |
+
Creates an empty note sequence.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
qpm (float, optional): The quarter notes per minute. Defaults to 120.0.
|
128 |
+
total_time (float, optional): The total time. Defaults to 0.0.
|
129 |
+
|
130 |
+
Returns:
|
131 |
+
NoteSequence: The empty note sequence.
|
132 |
+
"""
|
133 |
+
note_sequence = NoteSequence()
|
134 |
+
note_sequence.tempos.add().qpm = qpm
|
135 |
+
note_sequence.ticks_per_quarter = STANDARD_PPQ
|
136 |
+
note_sequence.total_time = total_time
|
137 |
+
return note_sequence
|
utils.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import note_seq
|
6 |
+
from matplotlib.figure import Figure
|
7 |
+
from numpy import ndarray
|
8 |
+
|
9 |
+
from constants import GM_INSTRUMENTS, SAMPLE_RATE
|
10 |
+
from string_to_notes import token_sequence_to_note_sequence
|
11 |
+
from model import get_model_and_tokenizer
|
12 |
+
|
13 |
+
|
14 |
+
model, tokenizer = get_model_and_tokenizer()
|
15 |
+
|
16 |
+
|
17 |
+
def create_seed_string(genre: str = "OTHER") -> str:
|
18 |
+
"""
|
19 |
+
Creates a seed string for generating a new piece.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
genre (str, optional): The genre of the piece. Defaults to "OTHER".
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
str: The seed string.
|
26 |
+
"""
|
27 |
+
seed_string = f"PIECE_START GENRE={genre} TRACK_START"
|
28 |
+
return seed_string
|
29 |
+
|
30 |
+
|
31 |
+
def get_instruments(text_sequence: str) -> List[str]:
|
32 |
+
"""
|
33 |
+
Extracts the list of instruments from a text sequence.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
text_sequence (str): The text sequence.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
List[str]: The list of instruments.
|
40 |
+
"""
|
41 |
+
instruments = []
|
42 |
+
parts = text_sequence.split()
|
43 |
+
for part in parts:
|
44 |
+
if part.startswith("INST="):
|
45 |
+
if part[5:] == "DRUMS":
|
46 |
+
instruments.append("Drums")
|
47 |
+
else:
|
48 |
+
index = int(part[5:])
|
49 |
+
instruments.append(GM_INSTRUMENTS[index])
|
50 |
+
return instruments
|
51 |
+
|
52 |
+
|
53 |
+
def generate_new_instrument(
|
54 |
+
seed: str, tokenizer: AutoTokenizer, model: AutoModelForCausalLM, temp: float = 0.75
|
55 |
+
) -> str:
|
56 |
+
"""
|
57 |
+
Generates a new instrument sequence from a given seed and temperature.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
seed (str): The seed string for the generation.
|
61 |
+
tokenizer (PreTrainedTokenizer): The tokenizer used to encode and decode the sequences.
|
62 |
+
model (PreTrainedModel): The pretrained model used for generating the sequences.
|
63 |
+
temp (float, optional): The temperature for the generation, which controls the randomness. Defaults to 0.75.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
str: The generated instrument sequence.
|
67 |
+
"""
|
68 |
+
seed_length = len(tokenizer.encode(seed))
|
69 |
+
|
70 |
+
while True:
|
71 |
+
# Encode the conditioning tokens.
|
72 |
+
input_ids = tokenizer.encode(seed, return_tensors="pt")
|
73 |
+
|
74 |
+
# Move the input_ids tensor to the same device as the model
|
75 |
+
input_ids = input_ids.to(model.device)
|
76 |
+
|
77 |
+
# Generate more tokens.
|
78 |
+
eos_token_id = tokenizer.encode("TRACK_END")[0]
|
79 |
+
generated_ids = model.generate(
|
80 |
+
input_ids,
|
81 |
+
max_new_tokens=2048,
|
82 |
+
do_sample=True,
|
83 |
+
temperature=temp,
|
84 |
+
eos_token_id=eos_token_id,
|
85 |
+
)
|
86 |
+
generated_sequence = tokenizer.decode(generated_ids[0])
|
87 |
+
|
88 |
+
# Check if the generated sequence contains "NOTE_ON" beyond the seed
|
89 |
+
new_generated_sequence = tokenizer.decode(generated_ids[0][seed_length:])
|
90 |
+
if "NOTE_ON" in new_generated_sequence:
|
91 |
+
return generated_sequence
|
92 |
+
|
93 |
+
|
94 |
+
def get_outputs_from_string(
|
95 |
+
generated_sequence: str, qpm: int = 120
|
96 |
+
) -> Tuple[ndarray, str, Figure, str, str]:
|
97 |
+
"""
|
98 |
+
Converts a generated sequence into various output formats including audio, MIDI, plot, etc.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
generated_sequence (str): The generated sequence of tokens.
|
102 |
+
qpm (int, optional): The quarter notes per minute. Defaults to 120.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
Tuple[ndarray, str, Figure, str, str]: The audio waveform, MIDI file name, plot figure,
|
106 |
+
instruments string, and number of tokens string.
|
107 |
+
"""
|
108 |
+
instruments = get_instruments(generated_sequence)
|
109 |
+
instruments_str = "\n".join(f"- {instrument}" for instrument in instruments)
|
110 |
+
note_sequence = token_sequence_to_note_sequence(generated_sequence, qpm=qpm)
|
111 |
+
|
112 |
+
synth = note_seq.fluidsynth
|
113 |
+
array_of_floats = synth(note_sequence, sample_rate=SAMPLE_RATE)
|
114 |
+
int16_data = note_seq.audio_io.float_samples_to_int16(array_of_floats)
|
115 |
+
fig = note_seq.plot_sequence(note_sequence, show_figure=False)
|
116 |
+
num_tokens = str(len(generated_sequence.split()))
|
117 |
+
audio = gr.make_waveform((SAMPLE_RATE, int16_data))
|
118 |
+
note_seq.note_sequence_to_midi_file(note_sequence, "midi_ouput.mid")
|
119 |
+
return audio, "midi_ouput.mid", fig, instruments_str, num_tokens
|
120 |
+
|
121 |
+
|
122 |
+
def remove_last_instrument(
|
123 |
+
text_sequence: str, qpm: int = 120
|
124 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
125 |
+
"""
|
126 |
+
Removes the last instrument from a song string and returns the various output formats.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
text_sequence (str): The song string.
|
130 |
+
qpm (int, optional): The quarter notes per minute. Defaults to 120.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
|
134 |
+
instruments string, new song string, and number of tokens string.
|
135 |
+
"""
|
136 |
+
# We split the song into tracks by splitting on 'TRACK_START'
|
137 |
+
tracks = text_sequence.split("TRACK_START")
|
138 |
+
# We keep all tracks except the last one
|
139 |
+
modified_tracks = tracks[:-1]
|
140 |
+
# We join the tracks back together, adding back the 'TRACK_START' that was removed by split
|
141 |
+
new_song = "TRACK_START".join(modified_tracks)
|
142 |
+
|
143 |
+
if len(tracks) == 2:
|
144 |
+
# There is only one instrument, so start from scratch
|
145 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
146 |
+
text_sequence=new_song
|
147 |
+
)
|
148 |
+
elif len(tracks) == 1:
|
149 |
+
# No instrument so start from empty sequence
|
150 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
151 |
+
text_sequence=""
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
|
155 |
+
new_song, qpm
|
156 |
+
)
|
157 |
+
|
158 |
+
return audio, midi_file, fig, instruments_str, new_song, num_tokens
|
159 |
+
|
160 |
+
|
161 |
+
def regenerate_last_instrument(
|
162 |
+
text_sequence: str, qpm: int = 120
|
163 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
164 |
+
"""
|
165 |
+
Regenerates the last instrument in a song string and returns the various output formats.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
text_sequence (str): The song string.
|
169 |
+
qpm (int, optional): The quarter notes per minute. Defaults to 120.
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
|
173 |
+
instruments string, new song string, and number of tokens string.
|
174 |
+
"""
|
175 |
+
last_inst_index = text_sequence.rfind("INST=")
|
176 |
+
if last_inst_index == -1:
|
177 |
+
# No instrument so start from empty sequence
|
178 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
179 |
+
text_sequence="", qpm=qpm
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
# Take it from the last instrument and continue generation
|
183 |
+
next_space_index = text_sequence.find(" ", last_inst_index)
|
184 |
+
new_seed = text_sequence[:next_space_index]
|
185 |
+
audio, midi_file, fig, instruments_str, new_song, num_tokens = generate_song(
|
186 |
+
text_sequence=new_seed, qpm=qpm
|
187 |
+
)
|
188 |
+
return audio, midi_file, fig, instruments_str, new_song, num_tokens
|
189 |
+
|
190 |
+
|
191 |
+
def change_tempo(
|
192 |
+
text_sequence: str, qpm: int
|
193 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
194 |
+
"""
|
195 |
+
Changes the tempo of a song string and returns the various output formats.
|
196 |
+
|
197 |
+
Args:
|
198 |
+
text_sequence (str): The song string.
|
199 |
+
qpm (int): The new quarter notes per minute.
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
|
203 |
+
instruments string, text sequence, and number of tokens string.
|
204 |
+
"""
|
205 |
+
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
|
206 |
+
text_sequence, qpm=qpm
|
207 |
+
)
|
208 |
+
return audio, midi_file, fig, instruments_str, text_sequence, num_tokens
|
209 |
+
|
210 |
+
|
211 |
+
def generate_song(
|
212 |
+
model: AutoModelForCausalLM = model,
|
213 |
+
tokenizer: AutoTokenizer = tokenizer,
|
214 |
+
genre: str = "OTHER",
|
215 |
+
temp: float = 0.75,
|
216 |
+
text_sequence: str = "",
|
217 |
+
qpm: int = 120,
|
218 |
+
) -> Tuple[ndarray, str, Figure, str, str, str]:
|
219 |
+
"""
|
220 |
+
Generates a song given a genre, temperature, initial text sequence, and tempo.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
model (AutoModelForCausalLM): The pretrained model used for generating the sequences.
|
224 |
+
tokenizer (AutoTokenizer): The tokenizer used to encode and decode the sequences.
|
225 |
+
genre (str, optional): The genre of the song. Defaults to "OTHER".
|
226 |
+
temp (float, optional): The temperature for the generation, which controls the randomness. Defaults to 0.75.
|
227 |
+
text_sequence (str, optional): The initial text sequence for the song. Defaults to "".
|
228 |
+
qpm (int, optional): The quarter notes per minute. Defaults to 120.
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
Tuple[ndarray, str, Figure, str, str, str]: The audio waveform, MIDI file name, plot figure,
|
232 |
+
instruments string, generated song string, and number of tokens string.
|
233 |
+
"""
|
234 |
+
if text_sequence == "":
|
235 |
+
seed_string = create_seed_string(genre)
|
236 |
+
else:
|
237 |
+
seed_string = text_sequence
|
238 |
+
|
239 |
+
generated_sequence = generate_new_instrument(
|
240 |
+
seed=seed_string, tokenizer=tokenizer, model=model, temp=temp
|
241 |
+
)
|
242 |
+
audio, midi_file, fig, instruments_str, num_tokens = get_outputs_from_string(
|
243 |
+
generated_sequence, qpm
|
244 |
+
)
|
245 |
+
return audio, midi_file, fig, instruments_str, generated_sequence, num_tokens
|