Spaces:
Runtime error
Runtime error
from contextlib import nullcontext | |
import gradio as gr | |
import torch | |
from torch import autocast | |
from diffusers import DiffusionPipeline | |
import streamlit as st | |
from transformers import ( | |
pipeline, | |
MBart50TokenizerFast, | |
MBartForConditionalGeneration, | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device_dict = {"cuda": 0, "cpu": -1} | |
context = autocast if device == "cuda" else nullcontext | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
# Add language detection pipeline | |
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection" | |
language_detection_pipeline = pipeline("text-classification", | |
model=language_detection_model_ckpt, | |
device=device_dict[device]) | |
# Add model for language translation | |
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt") | |
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device) | |
model_id = "CompVis/stable-diffusion-v1-4" | |
pipe = DiffusionPipeline.from_pretrained( | |
model_id, | |
custom_pipeline="multilingual_stable_diffusion", | |
use_auth_token=st.secrets["USER_TOKEN"], | |
detection_pipeline=language_detection_pipeline, | |
translation_model=trans_model, | |
translation_tokenizer=trans_tokenizer, | |
revision="fp16", | |
torch_dtype=dtype, | |
) | |
pipe = pipe.to(device) | |
#torch.backends.cudnn.benchmark = True | |
num_samples = 2 | |
def infer(prompt, steps, scale): | |
with context("cuda"): | |
images = pipe(num_samples*[prompt], | |
guidance_scale=scale, | |
num_inference_steps=int(steps)).images | |
return images | |
css = """ | |
a { | |
color: inherit; | |
text-decoration: underline; | |
} | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: #0000FF; | |
background: #0000FF; | |
} | |
input[type='range'] { | |
accent-color: #0000FF; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#gallery { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#gallery>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
#advanced-btn { | |
font-size: .7rem !important; | |
line-height: 19px; | |
margin-top: 12px; | |
margin-bottom: 12px; | |
padding: 2px 8px; | |
border-radius: 14px !important; | |
} | |
#advanced-options { | |
margin-bottom: 20px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.acknowledgments h4{ | |
margin: 1.25em 0 .25em 0; | |
font-weight: bold; | |
font-size: 115%; | |
} | |
#container-advanced-btns{ | |
display: flex; | |
flex-wrap: wrap; | |
justify-content: space-between; | |
align-items: center; | |
} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; | |
} | |
#share-btn { | |
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
.gr-form{ | |
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; | |
} | |
#prompt-container{ | |
gap: 0; | |
} | |
#generated_id{ | |
min-height: 700px | |
} | |
""" | |
block = gr.Blocks(css=css) | |
examples = [ | |
[ | |
'Una casa en la playa en un atardecer lluvioso', | |
45, | |
7.5, | |
], | |
[ | |
'Ein Hund, der Orange isst', | |
45, | |
7.5, | |
], | |
[ | |
"Photo d'un restaurant parisien", | |
45, | |
7.5, | |
], | |
[ | |
"FranΔu restorΔna fotogrΔfija", | |
45, | |
7.5, | |
], | |
[ | |
"ΰ°ͺΰ°Ύΰ°°ΰ°Ώΰ°Έΰ°Ώΰ°―ΰ°¨ΰ± ΰ°°ΰ±ΰ°Έΰ±ΰ°ΰ°Ύΰ°°ΰ±ΰ°ΰ°ΰ± ΰ°―ΰ±ΰ°ΰ±ΰ° ΰ°«ΰ±ΰ°ΰ±", | |
45, | |
7.5, | |
], | |
[ | |
"Ψ΅ΩΨ±Ψ© ΩΩ Ψ·ΨΉΩ Ψ¨Ψ§Ψ±ΩΨ³Ω", | |
45, | |
7.5, | |
], | |
] | |
with block as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Multilingual Stable Diffusion | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Stable Diffusion Pipeline that supports prompts in 50 different languages. | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
text = gr.Textbox( | |
label="Enter your prompt", show_label=False, max_lines=1 | |
).style( | |
border=(True, False, True, True), | |
rounded=(True, False, False, True), | |
container=False, | |
) | |
btn = gr.Button("Run").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style( | |
grid=[2], height="auto" | |
) | |
with gr.Row(elem_id="advanced-options"): | |
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=45, step=5) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 | |
) | |
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, steps, scale], outputs=gallery, cache_examples=False) | |
ex.dataset.headers = [""] | |
text.submit(infer, inputs=[text, steps, scale], outputs=gallery) | |
btn.click(infer, inputs=[text, steps, scale], outputs=gallery) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p>Stable Diffusion model that supports multiple languages by <a href="https://huggingface.co/juancopi81" style="text-decoration: underline;" target="_blank">juancopi81</a> | |
</p> | |
</div> | |
<div class="acknowledgments"> | |
<p><h4>LICENSE</h4> | |
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p> | |
<p><h4>Biases and content acknowledgment</h4> | |
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p> | |
</div> | |
""" | |
) | |
demo.queue(max_size=25).launch() |