Spaces:
Sleeping
Sleeping
doing some cleanup
Browse files
app.py
CHANGED
@@ -2,43 +2,121 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
""
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
_df = df
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
if
|
21 |
-
_df = _df[_df["
|
22 |
-
if
|
23 |
-
_df = _df[_df["
|
24 |
-
if
|
25 |
-
_df = _df[
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
if models:
|
30 |
_df = _df[
|
31 |
_df["models"].apply(
|
32 |
lambda x: (
|
33 |
-
any(model in x for model in
|
|
|
|
|
34 |
)
|
35 |
)
|
36 |
]
|
37 |
-
if
|
38 |
_df = _df[
|
39 |
_df["datasets"].apply(
|
40 |
lambda x: (
|
41 |
-
any(dataset in x for dataset in
|
42 |
if x is not None
|
43 |
else False
|
44 |
)
|
@@ -58,212 +136,269 @@ def filtered_df(emoji, likes, author, hardware, tags, models, datasets, space_li
|
|
58 |
# rename the columns names to make them more readable
|
59 |
_df = _df.rename(
|
60 |
columns={
|
61 |
-
|
62 |
-
|
63 |
"r_models": "Models",
|
64 |
"r_datasets": "Datasets",
|
65 |
"r_licenses": "Licenses",
|
66 |
}
|
67 |
)
|
68 |
|
69 |
-
return _df[["URL", "Likes", "Models", "Datasets", "Licenses"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
|
72 |
with gr.Blocks(fill_width=True) as demo:
|
|
|
73 |
with gr.Tab(label="Spaces Overview"):
|
74 |
|
75 |
-
# The Pandas dataframe has a datetime column. Plot the growth of spaces (row entries) over time.
|
76 |
# The x-axis should be the date and the y-axis should be the cumulative number of spaces created up to that date .
|
77 |
-
df = pd.read_parquet("spaces.parquet")
|
78 |
df = df.sort_values("created_at")
|
79 |
df['cumulative_spaces'] = df['created_at'].rank(method='first').astype(int)
|
80 |
-
fig1 = px.line(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
gr.Plot(fig1)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# create a pie chart showing the distribution of spaces by emoji for the top 10 used emojis
|
88 |
-
emoji_counts = df['emoji'].value_counts().head(10).reset_index()
|
89 |
-
fig3 = px.pie(emoji_counts, names='emoji', values='count', title='Distribution of Spaces by Emoji', template='plotly_dark')
|
90 |
-
gr.Plot(fig3)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
|
98 |
author_likes = df.groupby('author').agg({'likes': 'sum', 'id': 'count'}).reset_index()
|
99 |
-
fig4 = px.scatter(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
gr.Plot(fig4)
|
101 |
|
102 |
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
|
103 |
emoji_likes = df.groupby('emoji').agg({'likes': 'sum', 'id': 'count'}).sort_values(by='likes', ascending=False).head(20).reset_index()
|
104 |
-
fig10 = px.scatter(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
gr.Plot(fig10)
|
106 |
|
107 |
# Create a bar chart of hardware in use
|
108 |
hardware = df['hardware'].value_counts().reset_index()
|
109 |
hardware.columns = ['Hardware', 'Number of Spaces']
|
110 |
-
fig5 = px.bar(
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
gr.Plot(fig5)
|
113 |
|
114 |
-
|
115 |
-
model_count = {}
|
116 |
-
model_author_count = {}
|
117 |
-
for model in models:
|
118 |
-
author = model.split('/')[0]
|
119 |
-
if model in model_count:
|
120 |
-
model_count[model] += 1
|
121 |
-
else:
|
122 |
-
model_count[model] = 1
|
123 |
-
if author in model_author_count:
|
124 |
-
model_author_count[author] += 1
|
125 |
-
else:
|
126 |
-
model_author_count[author] = 1
|
127 |
model_author_count = pd.DataFrame(model_author_count.items(), columns=['Model Author', 'Number of Spaces'])
|
128 |
-
fig8 = px.bar(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
gr.Plot(fig8)
|
130 |
model_count = pd.DataFrame(model_count.items(), columns=['Model', 'Number of Spaces'])
|
131 |
# then make a bar chart
|
132 |
-
fig6 = px.bar(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
gr.Plot(fig6)
|
134 |
|
135 |
-
|
136 |
-
dataset_count = {}
|
137 |
-
dataset_author_count = {}
|
138 |
-
for dataset in datasets:
|
139 |
-
author = dataset.split('/')[0]
|
140 |
-
if dataset in dataset_count:
|
141 |
-
dataset_count[dataset] += 1
|
142 |
-
else:
|
143 |
-
dataset_count[dataset] = 1
|
144 |
-
if author in dataset_author_count:
|
145 |
-
dataset_author_count[author] += 1
|
146 |
-
else:
|
147 |
-
dataset_author_count[author] = 1
|
148 |
dataset_count = pd.DataFrame(dataset_count.items(), columns=['Datasets', 'Number of Spaces'])
|
149 |
dataset_author_count = pd.DataFrame(dataset_author_count.items(), columns=['Dataset Author', 'Number of Spaces'])
|
150 |
-
fig9 = px.bar(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
gr.Plot(fig9)
|
152 |
# then make a bar chart
|
153 |
-
fig7 = px.bar(
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
# Get the most duplicated spaces
|
162 |
-
liked_spaces = df[['id', 'likes']].sort_values(by='likes', ascending=False).head(20)
|
163 |
-
liked_spaces.columns = ['Space', 'Number of Likes']
|
164 |
-
gr.DataFrame(liked_spaces)
|
165 |
-
|
166 |
-
# Get the spaces with the longest READMEs
|
167 |
-
readme_sizes = df[['id', 'readme_size']].sort_values(by='readme_size', ascending=False).head(20)
|
168 |
-
readme_sizes.columns = ['Space', 'Longest READMEs']
|
169 |
-
gr.DataFrame(readme_sizes)
|
170 |
-
|
171 |
-
with gr.Tab(label="Spaces Search"):
|
172 |
-
df = pd.read_parquet("spaces.parquet")
|
173 |
-
df = df[df["stage"] == "RUNNING"]
|
174 |
-
# combine the sdk and tags columns, one of which is a string and the other is an array of strings
|
175 |
-
# first convert the sdk column to an array of strings
|
176 |
-
df["sdk"] = df["sdk"].apply(lambda x: np.array([str(x)]))
|
177 |
-
df["licenses"] = df["license"].apply(
|
178 |
-
lambda x: np.array([str(x)]) if x is None else x
|
179 |
-
)
|
180 |
-
# then combine the sdk and tags columns so that their elements are together
|
181 |
-
df["sdk_tags"] = df[["sdk", "tags"]].apply(
|
182 |
-
lambda x: np.concatenate((x.iloc[0], x.iloc[1])), axis=1
|
183 |
)
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
f"<a target='_blank' href=https://huggingface.co/spaces/{x.iloc[0]}>{str(x.iloc[1]) + " " + x.iloc[0]}</a>"
|
196 |
-
if x.iloc[0] is not None and "/" in x.iloc[0]
|
197 |
-
else f"<a target='_blank' href=https://{x.iloc[0][0]}>{str(x.iloc[1]) + " " + x.iloc[0][0]}</a>"
|
198 |
-
),
|
199 |
-
axis=1,
|
200 |
-
)
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
224 |
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
multiselect=True,
|
252 |
-
)
|
253 |
-
|
254 |
-
# Do the same for datasets that we did for models
|
255 |
-
datasets_column_to_list = df["datasets"].apply(
|
256 |
-
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
|
257 |
-
)
|
258 |
-
flattened_datasets = np.concatenate(datasets_column_to_list.values)
|
259 |
-
unique_datasets = np.unique(flattened_datasets)
|
260 |
-
datasets = gr.Dropdown(
|
261 |
-
unique_datasets.tolist(),
|
262 |
-
label="Search by Dataset",
|
263 |
-
multiselect=True,
|
264 |
-
)
|
265 |
|
266 |
-
devMode = gr.Checkbox(value=False, label="DevMode Enabled")
|
267 |
clear = gr.ClearButton(components=[
|
268 |
emoji,
|
269 |
author,
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
def load_transform_data():
|
8 |
+
"""
|
9 |
+
Load and transform data from a parquet file.
|
10 |
+
|
11 |
+
Returns:
|
12 |
+
pandas.DataFrame: Transformed dataframe.
|
13 |
+
"""
|
14 |
+
spaces_dataset = 'jsulz/space-stats'
|
15 |
+
dataset = load_dataset(spaces_dataset)
|
16 |
+
df = dataset['train'].to_pandas()
|
17 |
+
# combine the sdk and tags columns, one of which is a string and the other is an array of strings
|
18 |
+
df["sdk"] = df["sdk"].apply(lambda x: np.array([str(x)]))
|
19 |
+
df["licenses"] = df["license"].apply(
|
20 |
+
lambda x: np.array([str(x)]) if x is None else x
|
21 |
+
)
|
22 |
+
# then combine the sdk and tags columns so that their elements are together
|
23 |
+
df["sdk_tags"] = df[["sdk", "tags"]].apply(
|
24 |
+
lambda x: np.concatenate((x.iloc[0], x.iloc[1])), axis=1
|
25 |
+
)
|
26 |
|
27 |
+
# Fill the NaN values with an empty string
|
28 |
+
df['emoji'] = np.where(df['emoji'].isnull(), '', df['emoji'])
|
29 |
|
30 |
+
# where the custom_domains column is not null, use that as the url, otherwise, use the host column
|
31 |
+
df["url"] = np.where(
|
32 |
+
df["custom_domains"].isnull(),
|
33 |
+
df["id"],
|
34 |
+
df["custom_domains"],
|
35 |
+
)
|
36 |
|
37 |
+
# Build up a pretty url that's clickable with the emoji
|
38 |
+
df["url"] = df[["url", "emoji"]].apply(
|
39 |
+
lambda x: (
|
40 |
+
f"<a target='_blank' href=https://huggingface.co/spaces/{x.iloc[0]}>{str(x.iloc[1]) + " " + x.iloc[0]}</a>"
|
41 |
+
if x.iloc[0] is not None and "/" in x.iloc[0]
|
42 |
+
else f"<a target='_blank' href=https://{x.iloc[0][0]}>{str(x.iloc[1]) + " " + x.iloc[0][0]}</a>"
|
43 |
+
),
|
44 |
+
axis=1,
|
45 |
+
)
|
46 |
|
47 |
+
# Prep the models, datasets, and licenses columns for display
|
48 |
+
df["r_models"] = [
|
49 |
+
", ".join(models) if models is not None else "" for models in df["models"]
|
50 |
+
]
|
51 |
+
df["r_sdk_tags"] = [
|
52 |
+
", ".join(sdk_tags) if sdk_tags is not None else ""
|
53 |
+
for sdk_tags in df["sdk_tags"]
|
54 |
+
]
|
55 |
+
df["r_datasets"] = [
|
56 |
+
", ".join(datasets) if datasets is not None else ""
|
57 |
+
for datasets in df["datasets"]
|
58 |
+
]
|
59 |
+
df["r_licenses"] = [
|
60 |
+
", ".join(licenses) if licenses is not None else ""
|
61 |
+
for licenses in df["licenses"]
|
62 |
+
]
|
63 |
+
return df
|
64 |
+
|
65 |
+
|
66 |
+
def filtered_df(
|
67 |
+
filtered_emojis,
|
68 |
+
filtered_likes,
|
69 |
+
filtered_author,
|
70 |
+
filtered_hardware,
|
71 |
+
filtered_tags,
|
72 |
+
filtered_models,
|
73 |
+
filtered_datasets,
|
74 |
+
space_licenses,
|
75 |
+
):
|
76 |
+
"""
|
77 |
+
Filter the dataframe based on the given criteria.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
filtered_emojis (list): List of emojis to filter the dataframe by.
|
81 |
+
filtered_likes (int): Minimum number of likes to filter the dataframe by.
|
82 |
+
filtered_author (list): List of authors to filter the dataframe by.
|
83 |
+
filtered_hardware (list): List of hardware to filter the dataframe by.
|
84 |
+
filtered_tags (list): List of tags to filter the dataframe by.
|
85 |
+
filtered_models (list): List of models to filter the dataframe by.
|
86 |
+
filtered_datasets (list): List of datasets to filter the dataframe by.
|
87 |
+
space_licenses (list): List of licenses to filter the dataframe by.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
pandas.DataFrame: Filtered dataframe with the following columns: "URL", "Likes", "Models", "Datasets", "Licenses".
|
91 |
+
"""
|
92 |
_df = df
|
93 |
+
if filtered_emojis:
|
94 |
+
_df = _df[_df["emoji"].isin(filtered_emojis)]
|
95 |
+
if filtered_likes:
|
96 |
+
_df = _df[_df["likes"] >= filtered_likes]
|
97 |
+
if filtered_author:
|
98 |
+
_df = _df[_df["author"].isin(filtered_author)]
|
99 |
+
if filtered_hardware:
|
100 |
+
_df = _df[_df["hardware"].isin(filtered_hardware)]
|
101 |
+
if filtered_tags:
|
102 |
+
_df = _df[
|
103 |
+
_df["sdk_tags"].apply(lambda x: any(tag in x for tag in filtered_tags))
|
104 |
+
]
|
105 |
+
if filtered_models:
|
|
|
106 |
_df = _df[
|
107 |
_df["models"].apply(
|
108 |
lambda x: (
|
109 |
+
any(model in x for model in filtered_models)
|
110 |
+
if x is not None
|
111 |
+
else False
|
112 |
)
|
113 |
)
|
114 |
]
|
115 |
+
if filtered_datasets:
|
116 |
_df = _df[
|
117 |
_df["datasets"].apply(
|
118 |
lambda x: (
|
119 |
+
any(dataset in x for dataset in filtered_datasets)
|
120 |
if x is not None
|
121 |
else False
|
122 |
)
|
|
|
136 |
# rename the columns names to make them more readable
|
137 |
_df = _df.rename(
|
138 |
columns={
|
139 |
+
"url": "URL",
|
140 |
+
"likes": "Likes",
|
141 |
"r_models": "Models",
|
142 |
"r_datasets": "Datasets",
|
143 |
"r_licenses": "Licenses",
|
144 |
}
|
145 |
)
|
146 |
|
147 |
+
return _df[["URL", "Likes", "Models", "Datasets", "Licenses"]]
|
148 |
+
|
149 |
+
|
150 |
+
def count_items(items):
|
151 |
+
"""
|
152 |
+
Count the occurrences of items and authors in a given list of items.
|
153 |
+
Parameters:
|
154 |
+
items (dataframe column): A dataframe column containing a list of items.
|
155 |
+
Returns:
|
156 |
+
tuple: A tuple containing two dictionaries. The first dictionary contains the count of each item,
|
157 |
+
and the second dictionary contains the count of each author.
|
158 |
+
"""
|
159 |
+
items = np.concatenate([arr for arr in items.values if arr is not None])
|
160 |
+
item_count = {}
|
161 |
+
item_author_count = {}
|
162 |
+
for item in items:
|
163 |
+
if item in item_count:
|
164 |
+
item_count[item] += 1
|
165 |
+
else:
|
166 |
+
item_count[item] = 1
|
167 |
+
author = item.split('/')[0]
|
168 |
+
if author in item_author_count:
|
169 |
+
item_author_count[author] += 1
|
170 |
+
else:
|
171 |
+
item_author_count[author] = 1
|
172 |
+
|
173 |
+
return item_count, item_author_count
|
174 |
+
|
175 |
+
def flatten_column(_df, column):
|
176 |
+
"""
|
177 |
+
Flattens a column in a DataFrame.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
_df (pandas.DataFrame): The DataFrame containing the column.
|
181 |
+
column (str): The name of the column to flatten.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
list: A list of unique values from the flattened column.
|
185 |
+
"""
|
186 |
+
column_to_list = _df[column].apply(
|
187 |
+
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
|
188 |
+
)
|
189 |
+
flattened = np.concatenate(column_to_list.values)
|
190 |
+
uniques = np.unique(flattened)
|
191 |
+
return uniques.tolist()
|
192 |
|
193 |
|
194 |
with gr.Blocks(fill_width=True) as demo:
|
195 |
+
df = load_transform_data()
|
196 |
with gr.Tab(label="Spaces Overview"):
|
197 |
|
198 |
+
# The Pandas dataframe has a datetime column. Plot the growth of spaces (row entries) over time.
|
199 |
# The x-axis should be the date and the y-axis should be the cumulative number of spaces created up to that date .
|
|
|
200 |
df = df.sort_values("created_at")
|
201 |
df['cumulative_spaces'] = df['created_at'].rank(method='first').astype(int)
|
202 |
+
fig1 = px.line(
|
203 |
+
df,
|
204 |
+
x="created_at",
|
205 |
+
y="cumulative_spaces",
|
206 |
+
title="Growth of Spaces Over Time",
|
207 |
+
labels={"created_at": "Date", "cumulative_spaces": "Number of Spaces"},
|
208 |
+
template="plotly_dark",
|
209 |
+
)
|
210 |
gr.Plot(fig1)
|
211 |
|
212 |
+
with gr.Row():
|
213 |
+
# Create a pie charge showing the distribution of spaces by SDK
|
214 |
+
fig2 = px.pie(df, names='sdk', title='Distribution of Spaces by SDK', template='plotly_dark')
|
215 |
+
gr.Plot(fig2)
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
# create a pie chart showing the distribution of spaces by emoji for the top 10 used emojis
|
218 |
+
emoji_counts = df['emoji'].value_counts().head(10).reset_index()
|
219 |
+
fig3 = px.pie(emoji_counts, names='emoji', values='count', title='Distribution of Spaces by Emoji', template='plotly_dark')
|
220 |
+
gr.Plot(fig3)
|
221 |
|
222 |
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
|
223 |
author_likes = df.groupby('author').agg({'likes': 'sum', 'id': 'count'}).reset_index()
|
224 |
+
fig4 = px.scatter(
|
225 |
+
author_likes,
|
226 |
+
x="id",
|
227 |
+
y="likes",
|
228 |
+
title="Relationship between Number of Spaces Created and Number of Likes",
|
229 |
+
labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
|
230 |
+
hover_data={"author": True},
|
231 |
+
template="plotly_dark",
|
232 |
+
)
|
233 |
gr.Plot(fig4)
|
234 |
|
235 |
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
|
236 |
emoji_likes = df.groupby('emoji').agg({'likes': 'sum', 'id': 'count'}).sort_values(by='likes', ascending=False).head(20).reset_index()
|
237 |
+
fig10 = px.scatter(
|
238 |
+
emoji_likes,
|
239 |
+
x="id",
|
240 |
+
y="likes",
|
241 |
+
title="Relationship between Emoji and Number of Likes",
|
242 |
+
labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
|
243 |
+
hover_data={"emoji": True},
|
244 |
+
template="plotly_dark",
|
245 |
+
)
|
246 |
gr.Plot(fig10)
|
247 |
|
248 |
# Create a bar chart of hardware in use
|
249 |
hardware = df['hardware'].value_counts().reset_index()
|
250 |
hardware.columns = ['Hardware', 'Number of Spaces']
|
251 |
+
fig5 = px.bar(
|
252 |
+
hardware,
|
253 |
+
x="Hardware",
|
254 |
+
y="Number of Spaces",
|
255 |
+
title="Hardware in Use",
|
256 |
+
labels={
|
257 |
+
"Hardware": "Hardware",
|
258 |
+
"Number of Spaces": "Number of Spaces (log scale)",
|
259 |
+
},
|
260 |
+
color="Hardware",
|
261 |
+
template="plotly_dark",
|
262 |
+
)
|
263 |
+
fig5.update_layout(yaxis_type="log")
|
264 |
gr.Plot(fig5)
|
265 |
|
266 |
+
model_count, model_author_count = count_items(df['models'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
model_author_count = pd.DataFrame(model_author_count.items(), columns=['Model Author', 'Number of Spaces'])
|
268 |
+
fig8 = px.bar(
|
269 |
+
model_author_count.sort_values("Number of Spaces", ascending=False).head(
|
270 |
+
20
|
271 |
+
),
|
272 |
+
x="Model Author",
|
273 |
+
y="Number of Spaces",
|
274 |
+
title="Most Popular Model Authors",
|
275 |
+
labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
|
276 |
+
template="plotly_dark",
|
277 |
+
)
|
278 |
gr.Plot(fig8)
|
279 |
model_count = pd.DataFrame(model_count.items(), columns=['Model', 'Number of Spaces'])
|
280 |
# then make a bar chart
|
281 |
+
fig6 = px.bar(
|
282 |
+
model_count.sort_values("Number of Spaces", ascending=False).head(20),
|
283 |
+
x="Model",
|
284 |
+
y="Number of Spaces",
|
285 |
+
title="Most Used Models",
|
286 |
+
labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
|
287 |
+
template="plotly_dark",
|
288 |
+
)
|
289 |
gr.Plot(fig6)
|
290 |
|
291 |
+
dataset_count, dataset_author_count = count_items(df['datasets'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
dataset_count = pd.DataFrame(dataset_count.items(), columns=['Datasets', 'Number of Spaces'])
|
293 |
dataset_author_count = pd.DataFrame(dataset_author_count.items(), columns=['Dataset Author', 'Number of Spaces'])
|
294 |
+
fig9 = px.bar(
|
295 |
+
dataset_author_count.sort_values("Number of Spaces", ascending=False).head(
|
296 |
+
20
|
297 |
+
),
|
298 |
+
x="Dataset Author",
|
299 |
+
y="Number of Spaces",
|
300 |
+
title="Most Popular Dataset Authors",
|
301 |
+
labels={
|
302 |
+
"Dataset Author": "Dataset Author",
|
303 |
+
"Number of Spaces": "Number of Spaces",
|
304 |
+
},
|
305 |
+
template="plotly_dark",
|
306 |
+
)
|
307 |
gr.Plot(fig9)
|
308 |
# then make a bar chart
|
309 |
+
fig7 = px.bar(
|
310 |
+
dataset_count.sort_values("Number of Spaces", ascending=False).head(20),
|
311 |
+
x="Datasets",
|
312 |
+
y="Number of Spaces",
|
313 |
+
title="Most Used Datasets",
|
314 |
+
labels={"Datasets": "Datasets", "Number of Spaces": "Number of Spaces"},
|
315 |
+
template="plotly_dark",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
)
|
317 |
+
gr.Plot(fig7)
|
318 |
|
319 |
+
with gr.Row():
|
320 |
+
# Get the most duplicated spaces
|
321 |
+
duplicated_spaces = df['duplicated_from'].value_counts().head(20).reset_index()
|
322 |
+
duplicated_spaces["duplicated_from"] = duplicated_spaces[
|
323 |
+
"duplicated_from"
|
324 |
+
].apply(
|
325 |
+
lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
|
326 |
+
)
|
327 |
+
duplicated_spaces.columns = ["Space", "Number of Duplicates"]
|
328 |
+
gr.DataFrame(duplicated_spaces, datatype="html" )
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
+
# Get the most liked spaces
|
331 |
+
liked_spaces = df[['id', 'likes']].sort_values(by='likes', ascending=False).head(20)
|
332 |
+
liked_spaces["id"] = liked_spaces["id"].apply(
|
333 |
+
lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
|
334 |
+
)
|
335 |
+
liked_spaces.columns = ['Space', 'Number of Likes']
|
336 |
+
gr.DataFrame(liked_spaces, datatype="html")
|
337 |
+
|
338 |
+
with gr.Row():
|
339 |
+
# Create a dataframe with the top 10 authors and the number of spaces they have created
|
340 |
+
author_counts = df['author'].value_counts().head(20).reset_index()
|
341 |
+
author_counts["author"] = author_counts["author"].apply(
|
342 |
+
lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
|
343 |
+
)
|
344 |
+
author_counts.columns = ["Author", "Number of Spaces"]
|
345 |
+
gr.DataFrame(author_counts, datatype="html")
|
346 |
+
|
347 |
+
# create a dataframe where we groupby author and sum their likes
|
348 |
+
author_likes = df.groupby('author').agg({'likes': 'sum'}).reset_index()
|
349 |
+
author_likes = author_likes.sort_values(by='likes', ascending=False).head(20)
|
350 |
+
author_likes["author"] = author_likes["author"].apply(
|
351 |
+
lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
|
352 |
+
)
|
353 |
+
author_likes.columns = ["Author", "Number of Likes"]
|
354 |
+
gr.DataFrame(author_likes, datatype="html")
|
355 |
|
356 |
|
357 |
+
with gr.Tab(label="Spaces Search"):
|
358 |
+
df = df[df['stage'] == 'RUNNING']
|
359 |
+
|
360 |
+
# Layout
|
361 |
+
with gr.Row():
|
362 |
+
emoji = gr.Dropdown(
|
363 |
+
df["emoji"].unique().tolist(), label="Search by Emoji 🤗", multiselect=True
|
364 |
+
) # Dropdown to select the emoji
|
365 |
+
likes = gr.Slider(
|
366 |
+
minimum=df["likes"].min(),
|
367 |
+
maximum=df["likes"].max(),
|
368 |
+
step=1,
|
369 |
+
label="Filter by Likes",
|
370 |
+
) # Slider to filter by likes
|
371 |
+
with gr.Row():
|
372 |
+
author = gr.Dropdown(
|
373 |
+
df["author"].unique().tolist(), label="Search by Author", multiselect=True
|
374 |
+
)
|
375 |
+
# get the list of unique strings in the sdk_tags column
|
376 |
+
sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values))
|
377 |
+
# create a dropdown for the sdk_tags
|
378 |
+
sdk_tags = gr.Dropdown(
|
379 |
+
sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True
|
380 |
+
)
|
381 |
+
with gr.Row():
|
382 |
+
# create a gradio checkbox group for hardware
|
383 |
+
hardware = gr.CheckboxGroup(
|
384 |
+
df["hardware"].unique().tolist(), label="Filter by Hardware"
|
385 |
+
)
|
386 |
|
387 |
+
licenses = np.unique(np.concatenate(df["licenses"].values))
|
388 |
+
space_license = gr.Dropdown(licenses.tolist(), label="Filter by license")
|
389 |
|
390 |
+
with gr.Row():
|
391 |
+
models = gr.Dropdown(
|
392 |
+
flatten_column(df, "models"),
|
393 |
+
label="Search by Model",
|
394 |
+
multiselect=True,
|
395 |
+
)
|
396 |
+
datasets = gr.Dropdown(
|
397 |
+
flatten_column(df, "datasets"),
|
398 |
+
label="Search by Dataset",
|
399 |
+
multiselect=True,
|
400 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
401 |
|
|
|
402 |
clear = gr.ClearButton(components=[
|
403 |
emoji,
|
404 |
author,
|