paperchat / app.py
jspr's picture
Update app.py
51ff69d
raw
history blame
4.87 kB
import datetime
import os
from langchain.chains import VectorDBQAWithSourcesChain
import gradio as gr
import langchain
import weaviate
from langchain.vectorstores import Weaviate
import faiss
import pickle
from langchain import OpenAI
from arxiv import get_paper
from ingest_faiss import create_vector_store
def get_vectorstore(suffix):
index = faiss.read_index(f"{suffix}/docs.index")
with open(f"{suffix}/faiss_store.pkl", "rb") as f:
store = pickle.load(f)
store.index = index
return store
def set_openai_api_key(api_key, agent):
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
vectorstore = get_vectorstore()
qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
os.environ["OPENAI_API_KEY"] = ""
return qa_chain
def download_paper_and_embed(paper_arxiv_url, api_key):
if paper_arxiv_url and api_key:
paper_text = get_paper(paper_arxiv_url)
if 'abs' in paper_arxiv_url:
eprint_url = paper_arxiv_url.replace("https://arxiv.org/abs/", "https://arxiv.org/e-print/")
elif 'pdf' in paper_arxiv_url:
eprint_url = paper_arxiv_url.replace("https://arxiv.org/pdf/", "https://arxiv.org/e-print/")
else:
raise ValueError("Invalid arXiv URL")
suffix = 'paper-dir/' + eprint_url.replace("https://arxiv.org/e-print/", "")
if not os.path.exists(suffix + "/docs.index"):
create_vector_store(suffix, paper_text)
os.environ["OPENAI_API_KEY"] = api_key
vectorstore = get_vectorstore(suffix)
qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore)
os.environ["OPENAI_API_KEY"] = ""
return qa_chain
chain = None
def chat(inp, history, paper_arxiv_url, api_key, agent):
global chain
if history is None:
chain = download_paper_and_embed(paper_arxiv_url, api_key)
history = history or []
# if agent is None:
# history.append((inp, "Please paste your OpenAI key to use"))
# return history, history
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====")
print("inp: " + inp)
history = history or []
agent = chain
output = agent({"question": inp})
answer = output["answer"]
sources = output["sources"]
history.append((inp, answer))
history.append(("Sources?", sources))
print(history)
return history, history
block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
with block:
state = gr.State()
agent_state = gr.State()
with gr.Row():
gr.Markdown("<h3><center>PaperChat</center></h3>")
paper_arxiv_url = gr.Textbox(
placeholder="Paste the URL of the paper about which you want to ask a question",
show_label=False,
lines=1,
type="text",
)
openai_api_key_textbox = gr.Textbox(
placeholder="Paste your OpenAI API key (sk-...)",
show_label=False,
lines=1,
type="password",
)
# # button to download paper
# download_paper_button = gr.Button(
# value="Download paper and make embeddings",
# variant="secondary",
# ).click(
# download_paper_and_embed,
# inputs=[paper_arxiv_url, openai_api_key_textbox, agent_state],
# outputs=[agent_state],
# )
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
label="What's your question?",
placeholder="What's the answer to life, the universe, and everything?",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
# gr.Examples(
# examples=[
# "What are agents?",
# "How do I summarize a long document?",
# "What types of memory exist?",
# ],
# inputs=message,
# )
gr.HTML(
"""This app demonstrates question-answering on any given arxiv paper"""
)
gr.HTML(
"<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
)
submit.click(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
message.submit(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state])
# paper_arxiv_url.change(
# download_paper_and_embed,
# inputs=[paper_arxiv_url, agent_state],
# outputs=[agent_state],
# )
# openai_api_key_textbox.change(
# set_openai_api_key,
# inputs=[openai_api_key_textbox, agent_state],
# outputs=[agent_state],
# )
block.launch(debug=True)