autodrummer / app.py
jspr's picture
Update app.py
5587862
raw
history blame
1.9 kB
import gradio as gr
import openai
from t2a import text_to_audio
import joblib
from sentence_transformers import SentenceTransformer
import numpy as np
import os
reg = joblib.load('text_reg.joblib')
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
finetune = "davinci:ft-personal:autodrummer-v5-2022-11-04-22-34-07"
def get_note_text(prompt):
prompt = prompt + " ->"
# get completion from finetune
response = openai.Completion.create(
engine=finetune,
prompt=prompt,
temperature=0.5,
max_tokens=200,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
stop=["###"]
)
return response.choices[0].text.strip()
def increment_count():
with open('count.txt', 'r') as f:
count = int(f.read())
count += 1
with open('count.txt', 'w') as f:
f.write(str(count))
def get_drummer_output(prompt, tempo):
openai.api_key = os.environ['key']
if tempo == "fast":
tempo = 138
elif tempo == "slow":
tempo = 100
note_text = get_note_text(prompt)
# note_text = note_text + " " + note_text
# prompt_enc = model.encode([prompt])
# bpm = int(reg.predict(prompt_enc)[0]) + 20
audio = text_to_audio(note_text, tempo)
audio = np.array(audio.get_array_of_samples(), dtype=np.float32)
increment_count()
return (96000, audio)
iface = gr.Interface(
fn=get_drummer_output,
inputs=[
"text",
gr.Radio(["fast", "slow"], label="Tempo", default="fast"),
],
examples=[
["hiphop groove 808", "fast"],
["rock metal", "fast"],
["disco funk", "fast"],
],
outputs="audio",
title='Autodrummer',
description="Stable Diffusion for drum beats. Type in a genre and some descriptors (e.g., 'hiphop groove 808') to the prompt box and get a drum beat in that genre"
)
iface.launch()