jsodoge commited on
Commit
68ff734
1 Parent(s): 4a3ad49

prelim code test

Browse files
Files changed (1) hide show
  1. app.py +72 -162
app.py CHANGED
@@ -1,162 +1,72 @@
1
- import faicons as fa
2
- import plotly.express as px
3
-
4
- # Load data and compute static values
5
- from shared import app_dir, tips
6
- from shinywidgets import render_plotly
7
-
8
- from shiny import reactive, render
9
- from shiny.express import input, ui
10
-
11
- bill_rng = (min(tips.total_bill), max(tips.total_bill))
12
-
13
- # Add page title and sidebar
14
- ui.page_opts(title="Restaurant tipping", fillable=True)
15
-
16
- with ui.sidebar(open="desktop"):
17
- ui.input_slider(
18
- "total_bill",
19
- "Bill amount",
20
- min=bill_rng[0],
21
- max=bill_rng[1],
22
- value=bill_rng,
23
- pre="$",
24
- )
25
- ui.input_checkbox_group(
26
- "time",
27
- "Food service",
28
- ["Lunch", "Dinner"],
29
- selected=["Lunch", "Dinner"],
30
- inline=True,
31
- )
32
- ui.input_action_button("reset", "Reset filter")
33
-
34
- # Add main content
35
- ICONS = {
36
- "user": fa.icon_svg("user", "regular"),
37
- "wallet": fa.icon_svg("wallet"),
38
- "currency-dollar": fa.icon_svg("dollar-sign"),
39
- "ellipsis": fa.icon_svg("ellipsis"),
40
- }
41
-
42
- with ui.layout_columns(fill=False):
43
- with ui.value_box(showcase=ICONS["user"]):
44
- "Total tippers"
45
-
46
- @render.express
47
- def total_tippers():
48
- tips_data().shape[0]
49
-
50
- with ui.value_box(showcase=ICONS["wallet"]):
51
- "Average tip"
52
-
53
- @render.express
54
- def average_tip():
55
- d = tips_data()
56
- if d.shape[0] > 0:
57
- perc = d.tip / d.total_bill
58
- f"{perc.mean():.1%}"
59
-
60
- with ui.value_box(showcase=ICONS["currency-dollar"]):
61
- "Average bill"
62
-
63
- @render.express
64
- def average_bill():
65
- d = tips_data()
66
- if d.shape[0] > 0:
67
- bill = d.total_bill.mean()
68
- f"${bill:.2f}"
69
-
70
-
71
- with ui.layout_columns(col_widths=[6, 6, 12]):
72
- with ui.card(full_screen=True):
73
- ui.card_header("Tips data")
74
-
75
- @render.data_frame
76
- def table():
77
- return render.DataGrid(tips_data())
78
-
79
- with ui.card(full_screen=True):
80
- with ui.card_header(class_="d-flex justify-content-between align-items-center"):
81
- "Total bill vs tip"
82
- with ui.popover(title="Add a color variable", placement="top"):
83
- ICONS["ellipsis"]
84
- ui.input_radio_buttons(
85
- "scatter_color",
86
- None,
87
- ["none", "sex", "smoker", "day", "time"],
88
- inline=True,
89
- )
90
-
91
- @render_plotly
92
- def scatterplot():
93
- color = input.scatter_color()
94
- return px.scatter(
95
- tips_data(),
96
- x="total_bill",
97
- y="tip",
98
- color=None if color == "none" else color,
99
- trendline="lowess",
100
- )
101
-
102
- with ui.card(full_screen=True):
103
- with ui.card_header(class_="d-flex justify-content-between align-items-center"):
104
- "Tip percentages"
105
- with ui.popover(title="Add a color variable"):
106
- ICONS["ellipsis"]
107
- ui.input_radio_buttons(
108
- "tip_perc_y",
109
- "Split by:",
110
- ["sex", "smoker", "day", "time"],
111
- selected="day",
112
- inline=True,
113
- )
114
-
115
- @render_plotly
116
- def tip_perc():
117
- from ridgeplot import ridgeplot
118
-
119
- dat = tips_data()
120
- dat["percent"] = dat.tip / dat.total_bill
121
- yvar = input.tip_perc_y()
122
- uvals = dat[yvar].unique()
123
-
124
- samples = [[dat.percent[dat[yvar] == val]] for val in uvals]
125
-
126
- plt = ridgeplot(
127
- samples=samples,
128
- labels=uvals,
129
- bandwidth=0.01,
130
- colorscale="viridis",
131
- colormode="row-index",
132
- )
133
-
134
- plt.update_layout(
135
- legend=dict(
136
- orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
137
- )
138
- )
139
-
140
- return plt
141
-
142
-
143
- ui.include_css(app_dir / "styles.css")
144
-
145
- # --------------------------------------------------------
146
- # Reactive calculations and effects
147
- # --------------------------------------------------------
148
-
149
-
150
- @reactive.calc
151
- def tips_data():
152
- bill = input.total_bill()
153
- idx1 = tips.total_bill.between(bill[0], bill[1])
154
- idx2 = tips.time.isin(input.time())
155
- return tips[idx1 & idx2]
156
-
157
-
158
- @reactive.effect
159
- @reactive.event(input.reset)
160
- def _():
161
- ui.update_slider("total_bill", value=bill_rng)
162
- ui.update_checkbox_group("time", selected=["Lunch", "Dinner"])
 
1
+ import numpy as np
2
+ from sentence_transformers import SentenceTransformer
3
+ from sklearn.metrics.pairwise import cosine_similarity
4
+ from shiny import App, render, ui
5
+
6
+ # Initialize the sentence transformer model
7
+ model = SentenceTransformer('all-MiniLM-L6-v2')
8
+
9
+ # Sample queries
10
+ queries = [
11
+ "What is the weather today?",
12
+ "How to learn Python?",
13
+ "Best practices for data science.",
14
+ "What is the capital of France?",
15
+ "How to cook pasta?",
16
+ "Latest trends in technology.",
17
+ "What is machine learning?",
18
+ "Tips for healthy living.",
19
+ "How to invest in stocks?",
20
+ "Best programming languages to learn.",
21
+ "How to start a business?",
22
+ "What are the benefits of exercise?",
23
+ "History of the internet.",
24
+ "How to improve communication skills?",
25
+ "Understanding blockchain technology.",
26
+ "What is artificial intelligence?",
27
+ "Effective study techniques.",
28
+ "Travel tips for Europe.",
29
+ "How to write a resume?",
30
+ "What is the best way to learn math?"
31
+ ]
32
+
33
+ # Precompute embeddings for the queries
34
+ query_embeddings = model.encode(queries)
35
+
36
+ # Define the UI
37
+ app_ui = ui.page_fluid(
38
+ ui.h2("Sentence Similarity Finder"),
39
+ ui.input_text("user_input", "Enter your text:", placeholder="Type here..."),
40
+ ui.action_button("submit", "Get Similar Queries"),
41
+ ui.output_ui("results")
42
+ )
43
+
44
+ # Define server logic
45
+ def server(input, output):
46
+ @output
47
+ @render.ui
48
+ def results():
49
+ if input.submit() > 0:
50
+ user_text = input.user_input()
51
+ if user_text:
52
+ # Compute the embedding for the user input
53
+ user_embedding = model.encode([user_text])
54
+
55
+ # Compute cosine similarities
56
+ similarities = cosine_similarity(user_embedding, query_embeddings).flatten()
57
+
58
+ # Get the indices of the top 5 similar queries
59
+ top_indices = np.argsort(similarities)[-5:][::-1]
60
+
61
+ # Prepare the results to display
62
+ result_boxes = ui.tag_list()
63
+ for idx in top_indices:
64
+ result_boxes.append(ui.div(queries[idx], class_="result-box"))
65
+ return result_boxes
66
+ return ui.div("Please enter text and press the button.")
67
+
68
+ # Create the Shiny app
69
+ app = App(app_ui, server)
70
+
71
+ if __name__ == "__main__":
72
+ app.run()