Spaces:
Build error
more error handling
Browse filesdef ask_llm_chunk(chunk, questions):
chunk = chunk.astype(str)
try:
inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt")
except Exception as e:
st.write(f"An error occurred: {e}")
return ["Error occurred while tokenizing"] * len(questions)
# Check for token limit
if inputs["input_ids"].shape[1] > 512:
st.warning("Token limit exceeded for chunk")
return ["Token limit exceeded for chunk"] * len(questions)
outputs = model(**inputs)
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
inputs,
outputs.logits.detach(),
outputs.logits_aggregation.detach()
)
st.write(f"Testing DataFrame iloc: {chunk.iloc[0, 8]}") # Debugging line
answers = []
for coordinates in predicted_answer_coordinates:
if len(coordinates) == 1:
try:
st.write(f"Trying to access row {coordinates[0][0]}, col {coordinates[0][1]}") # Debugging line
answers.append(chunk.iloc[coordinates[0]].values)
except Exception as e:
st.write(f"An error occurred: {e}")
else:
cell_values = []
for coordinate in coordinates:
try:
cell_values.append(chunk.iloc[coordinate].values)
except Exception as e:
st.write(f"An error occurred: {e}")
answers.append(", ".join(cell_values))
return answers
@@ -12,43 +12,43 @@ def ask_llm_chunk(chunk, questions):
|
|
12 |
chunk = chunk.astype(str)
|
13 |
try:
|
14 |
inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt")
|
15 |
-
st.write(f"Token shape: {inputs['input_ids'].shape[1]}") # Debugging line
|
16 |
-
|
17 |
-
# Check for token limit
|
18 |
-
if inputs["input_ids"].shape[1] > 512:
|
19 |
-
st.warning("Token limit exceeded for chunk")
|
20 |
-
return ["Token limit exceeded for chunk"] * len(questions)
|
21 |
-
|
22 |
-
outputs = model(**inputs)
|
23 |
-
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
|
24 |
-
inputs,
|
25 |
-
outputs.logits.detach(),
|
26 |
-
outputs.logits_aggregation.detach()
|
27 |
-
)
|
28 |
-
|
29 |
-
answers = []
|
30 |
-
for coordinates in predicted_answer_coordinates:
|
31 |
-
st.write(f"Type of coordinates[0]: {type(coordinates[0])}") # Debugging line
|
32 |
-
st.write(f"Value of coordinates[0]: {coordinates[0]}") # Debugging line
|
33 |
-
|
34 |
-
st.write(f"DataFrame shape: {chunk.shape}") # Debugging line
|
35 |
-
|
36 |
-
if len(coordinates) == 1:
|
37 |
-
row, col = coordinates[0]
|
38 |
-
st.write(f"Trying to access row {row}, col {col}") # Debugging line
|
39 |
-
answers.append(chunk.iloc[row, col])
|
40 |
-
else:
|
41 |
-
cell_values = []
|
42 |
-
for coordinate in coordinates:
|
43 |
-
row, col = coordinate
|
44 |
-
st.write(f"Trying to access row {row}, col {col}") # Debugging line
|
45 |
-
cell_values.append(chunk.iloc[row, col])
|
46 |
-
answers.append(", ".join(map(str, cell_values)))
|
47 |
-
return answers
|
48 |
except Exception as e:
|
49 |
st.write(f"An error occurred: {e}")
|
50 |
return ["Error occurred while tokenizing"] * len(questions)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
|
|
|
12 |
chunk = chunk.astype(str)
|
13 |
try:
|
14 |
inputs = tokenizer(table=chunk, queries=questions, padding="max_length", truncation=True, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
except Exception as e:
|
16 |
st.write(f"An error occurred: {e}")
|
17 |
return ["Error occurred while tokenizing"] * len(questions)
|
18 |
|
19 |
+
# Check for token limit
|
20 |
+
if inputs["input_ids"].shape[1] > 512:
|
21 |
+
st.warning("Token limit exceeded for chunk")
|
22 |
+
return ["Token limit exceeded for chunk"] * len(questions)
|
23 |
+
|
24 |
+
outputs = model(**inputs)
|
25 |
+
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
|
26 |
+
inputs,
|
27 |
+
outputs.logits.detach(),
|
28 |
+
outputs.logits_aggregation.detach()
|
29 |
+
)
|
30 |
+
|
31 |
+
st.write(f"Testing DataFrame iloc: {chunk.iloc[0, 8]}") # Debugging line
|
32 |
+
|
33 |
+
answers = []
|
34 |
+
for coordinates in predicted_answer_coordinates:
|
35 |
+
if len(coordinates) == 1:
|
36 |
+
try:
|
37 |
+
st.write(f"Trying to access row {coordinates[0][0]}, col {coordinates[0][1]}") # Debugging line
|
38 |
+
answers.append(chunk.iloc[coordinates[0]].values)
|
39 |
+
except Exception as e:
|
40 |
+
st.write(f"An error occurred: {e}")
|
41 |
+
else:
|
42 |
+
cell_values = []
|
43 |
+
for coordinate in coordinates:
|
44 |
+
try:
|
45 |
+
cell_values.append(chunk.iloc[coordinate].values)
|
46 |
+
except Exception as e:
|
47 |
+
st.write(f"An error occurred: {e}")
|
48 |
+
answers.append(", ".join(cell_values))
|
49 |
+
return answers
|
50 |
+
|
51 |
+
|
52 |
|
53 |
|
54 |
|