TAPAS_Churn / app.py
jskinner215's picture
Create app.py
5f7785f
raw
history blame
2.18 kB
import streamlit as st
from st_aggrid import AgGrid
import pandas as pd
# from PIL import Image
from transformers import pipeline
st.set_page_config(layout="wide")
# im = Image.open("ai-favicon.png")
# st.set_page_config(page_title="Table Summarization",
# page_icon=im,layout='wide')
style = '''
<style>
header {visibility: hidden;}
div.block-container {padding-top:4rem;}
section[data-testid="stSidebar"] div:first-child {
padding-top: 0;
}
.font {
text-align:center;
font-family:sans-serif;font-size: 1.25rem;}
</style>
'''
st.markdown(style, unsafe_allow_html=True)
st.markdown('<p style="font-family:sans-serif;font-size: 1.9rem;">Table Question Answering using TAPAS</p>', unsafe_allow_html=True)
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
tqa = pipeline(task="table-question-answering",
model="google/tapas-large-finetuned-wtq")
# st.sidebar.image("ai-logo.png",width=200)
# with open('data.csv', 'rb') as f:
# st.sidebar.download_button('Download sample data', f, file_name='Sample Data.csv')
file_name = st.sidebar.file_uploader("Upload file:", type=['csv','xlsx'])
if file_name is None:
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
# st.image("loader.png")
else:
try:
df=pd.read_csv(file_name)
except:
df = pd.read_excel(file_name)
grid_response = AgGrid(
df.head(5),
columns_auto_size_mode='FIT_CONTENTS',
editable=True,
height=300,
width='100%',
)
question = st.text_input('Type your question')
df = df.astype(str)
with st.spinner():
if(st.button('Answer')):
answer = tqa(table=df, query=question,truncation=True)
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Results </p>",unsafe_allow_html = True)
st.success(answer)