Spaces:
Runtime error
Runtime error
Upload segementing_Letter_Using_CV2.py
Browse files
segementing_Letter_Using_CV2.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from local_utils import detect_lp
|
3 |
+
from get_plate import get_plate
|
4 |
+
#for test
|
5 |
+
# from transfer import load_model
|
6 |
+
# from preprocessing import preprocess_image
|
7 |
+
# import glob
|
8 |
+
# import matplotlib.pyplot as plt
|
9 |
+
# from os.path import splitext,basename
|
10 |
+
# import matplotlib.gridspec as gridspec
|
11 |
+
|
12 |
+
|
13 |
+
# 1. see what it looks like in different types: plate_image, gray, blur, binary,thre_mor
|
14 |
+
def DiffImage(LpImg):
|
15 |
+
if (len(LpImg)): #check if there is at least one license image
|
16 |
+
# Scales, calculates absolute values, and converts the result to 8-bit.
|
17 |
+
plate_image = cv2.convertScaleAbs(LpImg[0], alpha=(255.0))
|
18 |
+
|
19 |
+
# convert to grayscale and blur the image
|
20 |
+
#
|
21 |
+
gray = cv2.cvtColor(plate_image, cv2.COLOR_BGR2GRAY)
|
22 |
+
blur = cv2.GaussianBlur(gray,(7,7),0)
|
23 |
+
|
24 |
+
# Applied inversed thresh_binary
|
25 |
+
binary = cv2.threshold(blur, 180, 255,
|
26 |
+
cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
27 |
+
|
28 |
+
kernel3 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
29 |
+
thre_mor = cv2.morphologyEx(binary, cv2.MORPH_DILATE, kernel3)
|
30 |
+
|
31 |
+
return plate_image,gray,blur,binary,thre_mor
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
# Create sort_contours() function to grab the contour of each digit from left to right
|
36 |
+
def sort_contours(cnts,reverse = False):
|
37 |
+
i = 0
|
38 |
+
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
|
39 |
+
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
|
40 |
+
key=lambda b: b[1][i], reverse=reverse))
|
41 |
+
return cnts
|
42 |
+
|
43 |
+
|
44 |
+
def get_Crop_Letter(wpod_net,image):
|
45 |
+
|
46 |
+
vehicle, LpImg,cor = get_plate(wpod_net,image)
|
47 |
+
plate_image,gray,blur,binary,thre_mor=DiffImage(LpImg)
|
48 |
+
cont, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
49 |
+
#print(len(cont))
|
50 |
+
# creat a copy version "test_roi" of plat_image to draw bounding box
|
51 |
+
test_roi = plate_image.copy()
|
52 |
+
|
53 |
+
# Initialize a list which will be used to append charater image
|
54 |
+
crop_characters = []
|
55 |
+
|
56 |
+
# define standard width and height of character
|
57 |
+
digit_w, digit_h = 30, 60
|
58 |
+
|
59 |
+
for c in sort_contours(cont):
|
60 |
+
(x, y, w, h) = cv2.boundingRect(c)
|
61 |
+
ratio = h/w
|
62 |
+
if 1<=ratio<=5: # Only select contour with defined ratio
|
63 |
+
if h/plate_image.shape[0]>=0.5: # Select contour which has the height larger than XXX% of the plate
|
64 |
+
# Draw bounding box arroung digit number
|
65 |
+
cv2.rectangle(test_roi, (x, y), (x + w, y + h), (0, 255,0), 2 )
|
66 |
+
|
67 |
+
# Sperate number and gibe prediction
|
68 |
+
curr_num = thre_mor[y:y+h,x:x+w]
|
69 |
+
curr_num = cv2.resize(curr_num, dsize=(digit_w, digit_h))
|
70 |
+
_, curr_num = cv2.threshold(curr_num, 200, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
71 |
+
crop_characters.append(curr_num)
|
72 |
+
#print("Detect {} numbers!".format(len(crop_characters)))
|
73 |
+
return test_roi,crop_characters
|
74 |
+
|
75 |
+
|
76 |
+
|