Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# remove warning message
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from typing import final
|
5 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
6 |
+
|
7 |
+
# required library
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import matplotlib.gridspec as gridspec
|
12 |
+
from local_utils import detect_lp, getPath
|
13 |
+
from os.path import splitext,basename
|
14 |
+
from keras.models import model_from_json
|
15 |
+
from keras.preprocessing.image import load_img, img_to_array
|
16 |
+
from keras.applications.mobilenet_v2 import preprocess_input
|
17 |
+
from sklearn.preprocessing import LabelEncoder
|
18 |
+
import glob
|
19 |
+
import gradio as gr
|
20 |
+
from transfer import load_model
|
21 |
+
|
22 |
+
def sort_contours(cnts,reverse = False):
|
23 |
+
i = 0
|
24 |
+
boundingBoxes = [cv2.boundingRect(c) for c in cnts]
|
25 |
+
(cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
|
26 |
+
key=lambda b: b[1][i], reverse=reverse))
|
27 |
+
return cnts
|
28 |
+
|
29 |
+
def predict_from_model(image,model,labels):
|
30 |
+
image = cv2.resize(image,(80,80))
|
31 |
+
image = np.stack((image,)*3, axis=-1)
|
32 |
+
prediction = labels.inverse_transform([np.argmax(model.predict(image[np.newaxis,:]))])
|
33 |
+
return prediction
|
34 |
+
|
35 |
+
def classify(img,resize=False,Dmax=650, Dmin = 270):
|
36 |
+
wpod_net_path = "wpod-net.json"
|
37 |
+
wpod_net = load_model(wpod_net_path)
|
38 |
+
##preprocess_image
|
39 |
+
#img = cv2.imread(image_path)
|
40 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
41 |
+
img = img / 255
|
42 |
+
if resize:
|
43 |
+
img = cv2.resize(img, (224,224))
|
44 |
+
|
45 |
+
##get_plate
|
46 |
+
vehicle = img
|
47 |
+
ratio = float(max(vehicle.shape[:2])) / min(vehicle.shape[:2])
|
48 |
+
side = int(ratio * Dmin)
|
49 |
+
bound_dim = min(side, Dmax)
|
50 |
+
_ , LpImg, _, cor = detect_lp(wpod_net, vehicle, bound_dim, lp_threshold=0.5)
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
if (len(LpImg)): #check if there is at least one license image
|
55 |
+
# Scales, calculates absolute values, and converts the result to 8-bit.
|
56 |
+
plate_image = cv2.convertScaleAbs(LpImg[0], alpha=(255.0))
|
57 |
+
|
58 |
+
# convert to grayscale and blur the image
|
59 |
+
gray = cv2.cvtColor(plate_image, cv2.COLOR_BGR2GRAY)
|
60 |
+
blur = cv2.GaussianBlur(gray,(7,7),0)
|
61 |
+
|
62 |
+
# Applied inversed thresh_binary
|
63 |
+
binary = cv2.threshold(blur, 180, 255,
|
64 |
+
cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
65 |
+
|
66 |
+
kernel3 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
|
67 |
+
thre_mor = cv2.morphologyEx(binary, cv2.MORPH_DILATE, kernel3)
|
68 |
+
|
69 |
+
|
70 |
+
cont, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
71 |
+
|
72 |
+
test_roi = plate_image.copy()
|
73 |
+
crop_characters = []
|
74 |
+
digit_w, digit_h = 30, 60
|
75 |
+
|
76 |
+
for c in sort_contours(cont):
|
77 |
+
(x, y, w, h) = cv2.boundingRect(c)
|
78 |
+
ratio = h/w
|
79 |
+
if 1<=ratio<=3.5: # Only select contour with defined ratio
|
80 |
+
if h/plate_image.shape[0]>=0.5: # Select contour which has the height larger than 50% of the plate
|
81 |
+
# Draw bounding box arroung digit number
|
82 |
+
cv2.rectangle(test_roi, (x, y), (x + w, y + h), (0, 255,0), 2)
|
83 |
+
|
84 |
+
# Sperate number and gibe prediction
|
85 |
+
curr_num = thre_mor[y:y+h,x:x+w]
|
86 |
+
curr_num = cv2.resize(curr_num, dsize=(digit_w, digit_h))
|
87 |
+
_, curr_num = cv2.threshold(curr_num, 220, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
88 |
+
crop_characters.append(curr_num)
|
89 |
+
|
90 |
+
#print("Detect {} letters...".format(len(crop_characters)))
|
91 |
+
# Load model architecture, weight and labels
|
92 |
+
json_file = open('MobileNets_character_recognition.json', 'r')
|
93 |
+
loaded_model_json = json_file.read()
|
94 |
+
json_file.close()
|
95 |
+
model = model_from_json(loaded_model_json)
|
96 |
+
model.load_weights("License_character_recognition_weight.h5")
|
97 |
+
|
98 |
+
labels = LabelEncoder()
|
99 |
+
labels.classes_ = np.load('license_character_classes.npy')
|
100 |
+
|
101 |
+
#fig = plt.figure(figsize=(15,3))
|
102 |
+
#cols = len(crop_characters)
|
103 |
+
#grid = gridspec.GridSpec(ncols=cols,nrows=1,figure=fig)
|
104 |
+
|
105 |
+
final_string = ''
|
106 |
+
for i,character in enumerate(crop_characters):
|
107 |
+
#fig.add_subplot(grid[i])
|
108 |
+
title = np.array2string(predict_from_model(character,model,labels))
|
109 |
+
#plt.title('{}'.format(title.strip("'[]"),fontsize=20))
|
110 |
+
final_string+=title.strip("'[]")
|
111 |
+
#plt.axis(False)
|
112 |
+
#plt.imshow(character,cmap='gray')
|
113 |
+
|
114 |
+
try:
|
115 |
+
cols = len(crop_characters)
|
116 |
+
except ValueError:
|
117 |
+
return "No Plate Detected"
|
118 |
+
else:
|
119 |
+
if len(crop_characters) == 0:
|
120 |
+
return "No Plate Detected"
|
121 |
+
else:
|
122 |
+
return final_string
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
gr.Interface(fn=classify,
|
128 |
+
inputs=gr.inputs.Image(),
|
129 |
+
outputs="text",
|
130 |
+
title = "Plate Number Recognition",
|
131 |
+
examples = ['29Z5550.jpeg', 'germany_car_plate.jpg', 'india_car_plate.jpg', 'turkey_car_plate.jpg', 'vietnam_car_rectangle_plate.jpg'],
|
132 |
+
description="Automaticall Recognize the symbols contained in the number plates of a motor vehicle when read from an image provided. It will help the authorities to automatically detect motor vehicle that will violate number-coding scheme.",
|
133 |
+
allow_flagging="never").launch(inbrowser=True)
|
134 |
+
|
135 |
+
#classify("C:/Users/JomerJuan/Documents/Deep Learning/Plate Number Recognition/Plate_examples/germany_car_plate.jpg",resize=False,Dmax=650, Dmin = 270)
|
136 |
+
|