jsphoto-api / app.py
jsaplication's picture
Update app.py
4ba2742
raw
history blame
4.32 kB
import os
import cv2
import torch
from gfpgan.utils import GFPGANer
from flask import Flask, request, jsonify, send_file
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
import base64
from dotenv import load_dotenv
load_dotenv()
model_realesr = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path_realesr = 'realesr-general-x4v3.pth'
# Background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
model_gfpgan_1_4 = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
os.makedirs('output', exist_ok=True)
os.makedirs('temp', exist_ok=True)
# def inference(img, version, scale, weight):
def inference(img, version, scale):
# weight /= 100
print(img, version, scale)
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if version == 'v1.4':
face_enhancer = GFPGANer(
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
try:
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
except RuntimeError as error:
print('Error', error)
try:
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
except Exception as error:
print('wrong scale input.', error)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output, save_path
except Exception as error:
print('global exception', error)
return None, None
app = Flask(__name__)
@app.route('/reconstruir', methods=['POST'])
def reconstruir_imagem():
try:
token = request.form.get('token')
version = request.form.get('version',"v1.4")
scale = int(request.form.get('scale',2))
img_file = request.files['imagem']
if token == "api_key_abcd":
temp_filename = 'temp.jpg'
img_file.save(temp_filename)
# output, save_path = inference(temp_filename, version, scale)
output, save_path = inference(temp_filename, version, scale)
if output is not None:
# return send_file(save_path, mimetype='image/jpeg')
with open(save_path, 'rb') as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
return jsonify({'status': 'success', 'message':'Imagem restaurada com sucesso', 'image_base64': encoded_image})
else:
return jsonify({'status': 'error', 'message':'Falha na reconstrução da imagem'})
else:
return jsonify({'status': 'error', 'message': 'Token invalido'})
except Exception as e:
return jsonify({'status': 'error', 'message': str(e)})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))