Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import torch | |
from gfpgan.utils import GFPGANer | |
from flask import Flask, request, jsonify, send_file | |
from basicsr.archs.srvgg_arch import SRVGGNetCompact | |
from realesrgan.utils import RealESRGANer | |
import base64 | |
from dotenv import load_dotenv | |
load_dotenv() | |
model_realesr = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path_realesr = 'realesr-general-x4v3.pth' | |
# Background enhancer with RealESRGAN | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
model_path = 'realesr-general-x4v3.pth' | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
model_gfpgan_1_4 = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
os.makedirs('output', exist_ok=True) | |
os.makedirs('temp', exist_ok=True) | |
# def inference(img, version, scale, weight): | |
def inference(img, version, scale): | |
# weight /= 100 | |
print(img, version, scale) | |
try: | |
extension = os.path.splitext(os.path.basename(str(img)))[1] | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 3 and img.shape[2] == 4: | |
img_mode = 'RGBA' | |
elif len(img.shape) == 2: # for gray inputs | |
img_mode = None | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
else: | |
img_mode = None | |
h, w = img.shape[0:2] | |
if h < 300: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
if version == 'v1.4': | |
face_enhancer = GFPGANer( | |
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
try: | |
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
except RuntimeError as error: | |
print('Error', error) | |
try: | |
if scale != 2: | |
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 | |
h, w = img.shape[0:2] | |
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) | |
except Exception as error: | |
print('wrong scale input.', error) | |
if img_mode == 'RGBA': # RGBA images should be saved in png format | |
extension = 'png' | |
else: | |
extension = 'jpg' | |
save_path = f'output/out.{extension}' | |
cv2.imwrite(save_path, output) | |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) | |
return output, save_path | |
except Exception as error: | |
print('global exception', error) | |
return None, None | |
app = Flask(__name__) | |
def reconstruir_imagem(): | |
try: | |
token = request.form.get('token') | |
version = request.form.get('version',"v1.4") | |
scale = int(request.form.get('scale',2)) | |
img_file = request.files['imagem'] | |
if token == "api_key_abcd": | |
temp_filename = 'temp.jpg' | |
img_file.save(temp_filename) | |
# output, save_path = inference(temp_filename, version, scale) | |
output, save_path = inference(temp_filename, version, scale) | |
if output is not None: | |
# return send_file(save_path, mimetype='image/jpeg') | |
with open(save_path, 'rb') as image_file: | |
encoded_image = base64.b64encode(image_file.read()).decode('utf-8') | |
return jsonify({'status': 'success', 'message':'Imagem restaurada com sucesso', 'image_base64': encoded_image}) | |
else: | |
return jsonify({'status': 'error', 'message':'Falha na reconstrução da imagem'}) | |
else: | |
return jsonify({'status': 'error', 'message': 'Token invalido'}) | |
except Exception as e: | |
return jsonify({'status': 'error', 'message': str(e)}) | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860))) | |