structural_similarity_index_measure / structural_similarity_index_measure.py
jpxkqx's picture
Update
df40628
raw
history blame
4.86 kB
"""Structural Similarity Index Measure metric."""
import datasets
import numpy as np
from skimage.metrics import structural_similarity
from typing import Dict, Optional
import evaluate
_DESCRIPTION = """
Compute the mean Structural Similarity Index Measure (SSIM) between two images.
Please pay attention to the `data_range` parameter with floating-point images.
Notes:
-----
If `data_range` is not specified, the range is automatically guessed based on the image
data type. However for floating-point image data, this estimate yields a result double
the value of the desired range, as the `dtype_range` in `skimage.util.dtype.py` has
defined intervals from -1 to +1. This yields an estimate of 2, instead of 1, which is
most oftenrequired when working with image data (as negative light intentsities are
nonsensical). In case of working with YCbCr-like color data, note that these ranges are
different per channel (Cb and Cr have double the range of Y), so one cannot calculate a
channel-averaged SSIM with a single call to this function, as identical ranges are
assumed for each channel. To match the implementation of Wang et al. [1]_, set
`gaussian_weights` to True, `sigma` to 1.5, `use_sample_covariance` to False, and
specify the `data_range` argument.
"""
_KWARGS_DESCRIPTION = """
Args:
predictions (`list` of `np.array`): Predicted labels.
references (`list` of `np.array`): Ground truth labels.
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
ssim (`float`): Structural Similarity Index Measure. The SSIM values are in range
(-1, 1], when pixels are non-negative.
Examples:
Example 1-A simple example
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[[0, 0], [-1, -1]], predictions=[[0, 1], [0, 0]])
>>> print(results)
0.5
"""
_CITATION = """
@article{boulogne2014scikit,
title={Scikit-image: Image processing in Python},
author={Boulogne, Fran{\c{c}}ois and Warner, Joshua D and Neil Yager, Emmanuelle},
journal={J. PeerJ},
volume={2},
pages={453},
year={2014}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class StructuralSimilarityIndexMeasure(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(self._get_feature_types()),
reference_urls=["https://scikit-image.org/docs/dev/auto_examples/transform/plot_ssim.html"],
)
def _get_feature_types(self):
if self.config_name == "multilist":
return {
# 1st Seq - num_samples, 2nd Seq - Height, 3rd Seq - Width
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
),
}
else:
return {
# 1st Seq - Height, 2rd Seq - Width
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float32"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float32"))
),
}
def _compute(
self,
predictions,
references,
win_size: Optional[int] = None,
gaussian_weights: Optional[bool] = False,
data_range: Optional[float] = None,
multichannel: Optional[bool] = False,
sample_weight=None,
**kwargs
) -> Dict[str, float]:
if self.config_name == "multilist":
def func_ssim(args):
pred, target = args
pred = np.array(pred)
target = np.array(target)
return structural_similarity(
pred,
target,
win_size=win_size,
gaussian_weights=gaussian_weights,
data_range=data_range,
multichannel=multichannel,
**kwargs
)
return np.average(
list(map(func_ssim, zip(predictions, references))),
weights=sample_weight
)
else:
return structural_similarity(
np.array(predictions),
np.array(references),
win_size=win_size,
gaussian_weights=gaussian_weights,
data_range=data_range,
multichannel=multichannel,
**kwargs
)