jpdiazpardo commited on
Commit
43ba5f1
·
1 Parent(s): a7fe6bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -48,14 +48,14 @@ title = "Scream: Fine-Tuned Whisper model for automatic gutural speech recogniti
48
  classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
49
 
50
  #Functions-----------------------------------------------------------------------------------------------------------------------
51
- def transcribe(*args):#file, return_timestamps, *kwargs):
52
  '''inputs: file, return_timestamps'''
53
- outputs = pipe(args[3], batch_size=BATCH_SIZE, generate_kwargs={"task": 'transcribe'}, return_timestamps=True)
54
  text = outputs["text"]
55
  timestamps = outputs["chunks"]
56
 
57
  #If return timestamps is True, return html text with timestamps format
58
- if args[4]==True:
59
  spider_text = [f"{chunk['text']}" for chunk in timestamps] #Text for spider chart without timestamps
60
  timestamps = [f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps]
61
 
@@ -71,7 +71,7 @@ def transcribe(*args):#file, return_timestamps, *kwargs):
71
  av_dict = calculate_average(trans_dict)
72
  fig = spider_chart(av_dict)
73
 
74
- return args[3], text, fig, av_dict
75
 
76
  embed_html = '<iframe src="https://www.youtube.com/embed/YOUTUBE_ID'\
77
  'title="YouTube video player" frameborder="0" allow="accelerometer;'\
 
48
  classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
49
 
50
  #Functions-----------------------------------------------------------------------------------------------------------------------
51
+ def transcribe(link,download,thumbnail,file,use_timestamps,sentiment_analysis):#file, return_timestamps, *kwargs):
52
  '''inputs: file, return_timestamps'''
53
+ outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": 'transcribe'}, return_timestamps=True)
54
  text = outputs["text"]
55
  timestamps = outputs["chunks"]
56
 
57
  #If return timestamps is True, return html text with timestamps format
58
+ if use_timestamps==True:
59
  spider_text = [f"{chunk['text']}" for chunk in timestamps] #Text for spider chart without timestamps
60
  timestamps = [f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps]
61
 
 
71
  av_dict = calculate_average(trans_dict)
72
  fig = spider_chart(av_dict)
73
 
74
+ return file, text, fig, av_dict
75
 
76
  embed_html = '<iframe src="https://www.youtube.com/embed/YOUTUBE_ID'\
77
  'title="YouTube video player" frameborder="0" allow="accelerometer;'\