whisperspeech / app.py
jpc's picture
Simplified the UI and the generation code
a68da21
raw
history blame
6.52 kB
import spaces
import gradio as gr
import io
import os
import re
import torch
import torchaudio
from pathlib import Path
from whisperspeech.pipeline import Pipeline
title = """# 🙋🏻‍♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech)
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗
### How to Use
Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio.
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request !
"""
text_examples = [
["This is the first demo of Whisper Speech, a fully open source text-to-speech model trained by Collabora and Lion on the Juwels supercomputer.", None],
["World War II or the Second World War was a global conflict that lasted from 1939 to 1945. The vast majority of the world's countries, including all the great powers, fought as part of two opposing military alliances: the Allies and the Axis.", "https://upload.wikimedia.org/wikipedia/commons/7/75/Winston_Churchill_-_Be_Ye_Men_of_Valour.ogg"],
["<pl>To jest pierwszy test wielojęzycznego <en>Whisper Speech <pl>, modelu zamieniającego tekst na mowę, który Collabora i Laion nauczyli na superkomputerze <en>Jewels.", None],
["<en> WhisperSpeech is an Open Source library that helps you convert text to speech. <pl>Teraz także po Polsku! <en>I think I just tried saying \"now also in Polish\", don't judge me...", None],
# ["<de> WhisperSpeech is multi-lingual <es> y puede cambiar de idioma <hi> मध्य वाक्य में"],
["<pl>To jest pierwszy test naszego modelu. Pozdrawiamy serdecznie.", None],
# ["<en> The big difference between Europe <fr> et les Etats Unis <pl> jest to, że mamy tak wiele języków <uk> тут, в Європі"]
]
def parse_multilingual_text(input_text):
pattern = r"(?:<(\w+)>)|([^<]+)"
cur_lang = 'en'
segments = []
for i, (lang, txt) in enumerate(re.findall(pattern, input_text)):
if lang: cur_lang = lang
else: segments.append((cur_lang, f" {txt} ")) # add spaces to give it some time to switch languages
if not segments: return [("en", "")]
return segments
@spaces.GPU(enable_queue=True)
def generate_audio(pipe, segments, speaker, speaker_url, cps=14):
if isinstance(speaker, (str, Path)): speaker = pipe.extract_spk_emb(speaker)
elif speaker_url: speaker = pipe.extract_spk_emb(speaker_url)
else: speaker = pipe.default_speaker
langs, texts = [list(x) for x in zip(*segments)]
print(texts, langs)
stoks = pipe.t2s.generate(texts, cps=cps, lang=langs)[0]
atoks = pipe.s2a.generate(stoks, speaker.unsqueeze(0))
audio = pipe.vocoder.decode(atoks)
return audio.cpu()
def whisper_speech_demo(multilingual_text, speaker_audio, speaker_url, cps):
if len(multilingual_text) == 0:
raise gr.Error("Please enter some text for me to speak!")
segments = parse_multilingual_text(multilingual_text)
audio = generate_audio(pipe, segments, speaker_audio, speaker_url, cps)
return (24000, audio.T.numpy())
# Did not work for me in Safari:
# mp3 = io.BytesIO()
# torchaudio.save(mp3, audio, 24000, format='mp3')
# return mp3.getvalue()
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
text_input = gr.Textbox(label="Enter multilingual text💬📝",
value=text_examples[0][0],
info="You can use `<en>` for English and `<pl>` for Polish, see examples below.")
cps = gr.Slider(value=14, minimum=10, maximum=15, step=.25,
label="Tempo (in characters per second)")
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬",
sources=["upload", "microphone"],
type='filepath')
gr.Markdown(" \n ") # fixes the bottom overflow from Audio
url_input = gr.Textbox(label="alternatively, you can paste in an audio file URL:")
generate_button = gr.Button("Try Collabora's WhisperSpeech🌟")
with gr.Column(scale=1):
output_audio = gr.Audio(label="WhisperSpeech says…")
with gr.Row():
gr.Examples(
examples=text_examples,
inputs=[text_input, url_input],
outputs=[output_audio],
fn=whisper_speech_demo,
cache_examples=False,
label="Try these to get started !🌟🌬️"
)
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input, url_input, cps], outputs=output_audio)
pipe = Pipeline()#torch_compile=True)
pipe.generate("WhisperSpeech warmup")
demo.launch(server_port=3000)#, share=True)