Spaces:
Configuration error
Configuration error
Upload _Generation.py
Browse files- _Generation.py +662 -0
_Generation.py
ADDED
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import guitarpro
|
2 |
+
from guitarpro import *
|
3 |
+
from matplotlib import pyplot as plt
|
4 |
+
import mgzip
|
5 |
+
import numpy as np
|
6 |
+
import os
|
7 |
+
from os.path import join
|
8 |
+
import pickle
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
import tensorflow as tf
|
12 |
+
from tensorflow import keras
|
13 |
+
from keras.callbacks import ModelCheckpoint
|
14 |
+
from keras.models import Sequential
|
15 |
+
from keras.layers import Activation, Dense, LSTM, Dropout, Flatten
|
16 |
+
|
17 |
+
from _Decompressor import SongWriter
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# Define some constants:
|
22 |
+
|
23 |
+
|
24 |
+
# PITCH[i] = the pitch associated with midi note number i.
|
25 |
+
# For example, PITCH[69] = 'A4'
|
26 |
+
PITCH = {val : str(GuitarString(number=0, value=val)) for val in range(128)}
|
27 |
+
# MIDI[string] = the midi number associated with the note described by string.
|
28 |
+
# For example, MIDI['A4'] = 69.
|
29 |
+
MIDI = {str(GuitarString(number=0, value=val)) : val for val in range(128)}
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
# Generation helper methods:
|
37 |
+
def thirty_seconds_to_duration(count):
|
38 |
+
if count % 3 == 0:
|
39 |
+
# If the note is dotted, do 32 / (i * 2/3), and return isDotted = True.
|
40 |
+
return (48//count, True)
|
41 |
+
else:
|
42 |
+
# If the note is not dotted, to 32 / i, and return isDotted = False.
|
43 |
+
return (32//count, False)
|
44 |
+
|
45 |
+
|
46 |
+
def quantize_thirty_seconds(value):
|
47 |
+
|
48 |
+
# 32nd-note values of each fundamental type of note (not including 64th-notes, of course).
|
49 |
+
vals = np.array([32, # whole
|
50 |
+
24, # dotted half
|
51 |
+
16, # half
|
52 |
+
12, # dotted quarter
|
53 |
+
8, # quarter
|
54 |
+
6, # dotted eigth
|
55 |
+
4, # eigth
|
56 |
+
3, # dotted sixteenth
|
57 |
+
2, # sixteenth
|
58 |
+
1]) # thirty-second
|
59 |
+
|
60 |
+
list_out = []
|
61 |
+
|
62 |
+
for v in vals:
|
63 |
+
if v <= value:
|
64 |
+
list_out.append(thirty_seconds_to_duration(v))
|
65 |
+
value -= v
|
66 |
+
|
67 |
+
return np.array(list_out)
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
def adjust_to_4_4(prediction_output):
|
73 |
+
'''
|
74 |
+
Adjust prediction output to be in 4/4 time.
|
75 |
+
Then, separate the beats into measures.
|
76 |
+
'''
|
77 |
+
|
78 |
+
# This will be the prediction output
|
79 |
+
new_prediction_output = []
|
80 |
+
|
81 |
+
|
82 |
+
time = 0
|
83 |
+
for beat in prediction_output:
|
84 |
+
|
85 |
+
# Calculate the fraction of a measure encompassed by the current beat / chord.
|
86 |
+
beat_time = (1 / beat[1]) * (1 + 0.5 * beat[2])
|
87 |
+
|
88 |
+
# Calculate the fraction of a measure taken up by all notes in the measure.
|
89 |
+
# Calculate any residual time to see if this measure (in 4/4 time) is longer than 1 measure.
|
90 |
+
measure_time = time + beat_time
|
91 |
+
leftover_time = (measure_time) % 1
|
92 |
+
|
93 |
+
# If the measure count (i.e., the measure integer) has changed and there is significant left-over beat time:
|
94 |
+
if (int(measure_time) > int(time)) and (leftover_time > 1/128):
|
95 |
+
|
96 |
+
# Calculate the initial 32nd notes encompassed by this beat in the current measure.
|
97 |
+
this_measure_thirty_seconds = int(32 * (1 - time % 1))
|
98 |
+
# Calculate the remaining 32nd notes encompassed by this beat in the next measure.
|
99 |
+
next_measure_thirty_seconds = int(32 * leftover_time)
|
100 |
+
|
101 |
+
# Get the Duration object parameters for this measure and the next measure.
|
102 |
+
this_measure_durations = quantize_thirty_seconds(this_measure_thirty_seconds)
|
103 |
+
next_measure_durations = quantize_thirty_seconds(next_measure_thirty_seconds)
|
104 |
+
|
105 |
+
|
106 |
+
#print(f'{{ {32 / beat[1]}')
|
107 |
+
for duration_idx, duration in enumerate(this_measure_durations):
|
108 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
109 |
+
|
110 |
+
#print(time, '\t', time * 32)
|
111 |
+
|
112 |
+
chord = beat[0] if duration_idx == 0 else 'tied'
|
113 |
+
|
114 |
+
new_prediction_output.append((chord, duration[0], duration[1], beat[3]))
|
115 |
+
|
116 |
+
|
117 |
+
for duration in next_measure_durations:
|
118 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
119 |
+
|
120 |
+
#print(time, '\t', time * 32)
|
121 |
+
|
122 |
+
new_prediction_output.append(('tied', duration[0], duration[1], beat[3]))
|
123 |
+
|
124 |
+
|
125 |
+
continue
|
126 |
+
|
127 |
+
|
128 |
+
time += beat_time
|
129 |
+
new_prediction_output.append((beat[0], beat[1], beat[2], beat[3]))
|
130 |
+
|
131 |
+
#print(time, '\t', time * 32)
|
132 |
+
|
133 |
+
|
134 |
+
'''
|
135 |
+
# Code for debugging
|
136 |
+
|
137 |
+
time = 0
|
138 |
+
time2 = 0
|
139 |
+
idx = 0
|
140 |
+
|
141 |
+
for idx2, beat2 in enumerate(new_prediction_output[:100]):
|
142 |
+
beat = prediction_output[idx]
|
143 |
+
|
144 |
+
if time == time2:
|
145 |
+
print(beat[0], '\t', time, '\t\t', beat2[0], '\t', time2)
|
146 |
+
|
147 |
+
idx += 1
|
148 |
+
|
149 |
+
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
150 |
+
|
151 |
+
else:
|
152 |
+
print('\t\t\t\t', beat2[0], '\t', time2)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
time2 += (1 / beat2[1]) * (1 + 0.5 * beat2[2])
|
157 |
+
''';
|
158 |
+
|
159 |
+
# Use the previously calculated cumulative time as the number of measures in the new 4/4 song.
|
160 |
+
num_measures = int(np.ceil(time))
|
161 |
+
|
162 |
+
song = np.empty(num_measures, dtype=object)
|
163 |
+
|
164 |
+
time = 0
|
165 |
+
m_idx = 0
|
166 |
+
|
167 |
+
timestamps = []
|
168 |
+
|
169 |
+
for beat in new_prediction_output:
|
170 |
+
#print(time)
|
171 |
+
timestamps.append(time)
|
172 |
+
|
173 |
+
m_idx = int(time)
|
174 |
+
|
175 |
+
if song[m_idx] is None:
|
176 |
+
|
177 |
+
song[m_idx] = [beat]
|
178 |
+
else:
|
179 |
+
song[m_idx].append(beat)
|
180 |
+
|
181 |
+
|
182 |
+
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
183 |
+
|
184 |
+
|
185 |
+
print(f'4/4 adjusted correctly: {set(range(num_measures)).issubset(set(timestamps))}')
|
186 |
+
|
187 |
+
return song
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
class Generator:
|
196 |
+
def __init__(self, num_tracks_to_generate=5, as_fingerings=True, sequence_length=100):
|
197 |
+
with mgzip.open(join('data', 'notes_data.pickle.gz'), 'rb') as filepath:
|
198 |
+
self.notes = pickle.load(filepath)
|
199 |
+
self.note_to_int = pickle.load(filepath)
|
200 |
+
self.int_to_note = pickle.load(filepath)
|
201 |
+
self.n_vocab = pickle.load(filepath)
|
202 |
+
self.NUM_TRACKS_TO_GENERATE = num_tracks_to_generate
|
203 |
+
self.as_fingerings = as_fingerings
|
204 |
+
self.sequence_length = sequence_length
|
205 |
+
|
206 |
+
with mgzip.open(join('data', 'track_data.pickle.gz'), 'rb') as filepath:
|
207 |
+
self.track_data = pickle.load(filepath)
|
208 |
+
|
209 |
+
self.model = keras.models.load_model('minigpt')
|
210 |
+
|
211 |
+
self.ints = np.array([self.note_to_int[x] for x in self.notes])
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
def generate_track(self, track_idx=None):
|
216 |
+
|
217 |
+
if track_idx is None:
|
218 |
+
# Choose a random track
|
219 |
+
track_idx = np.random.choice(len(self.track_data))
|
220 |
+
|
221 |
+
# Get the note indices corresponding to the beginning and ending of the track
|
222 |
+
song_note_idx_first = self.track_data.loc[track_idx]['noteStartIdx']
|
223 |
+
song_note_idx_last = self.track_data.loc[track_idx+1]['noteStartIdx']
|
224 |
+
|
225 |
+
# Choose a random starting point within the track
|
226 |
+
start_idx = np.random.randint(low=song_note_idx_first,
|
227 |
+
high=song_note_idx_last)
|
228 |
+
|
229 |
+
# Choose a number of initial notes to select from the track, at most 100.
|
230 |
+
#num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
231 |
+
num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
232 |
+
|
233 |
+
# Select the initial notes (tokens)
|
234 |
+
start_tokens = [_ for _ in self.ints[start_idx:start_idx+num_initial_notes]]
|
235 |
+
|
236 |
+
|
237 |
+
max_tokens = 100
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
def sample_from(logits, top_k=10):
|
242 |
+
logits, indices = tf.math.top_k(logits, k=top_k, sorted=True)
|
243 |
+
indices = np.asarray(indices).astype("int32")
|
244 |
+
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
|
245 |
+
preds = np.asarray(preds).astype("float32")
|
246 |
+
return np.random.choice(indices, p=preds)
|
247 |
+
|
248 |
+
num_tokens_generated = 0
|
249 |
+
tokens_generated = []
|
250 |
+
|
251 |
+
while num_tokens_generated <= max_tokens:
|
252 |
+
pad_len = self.sequence_length - len(start_tokens)
|
253 |
+
sample_index = len(start_tokens) - 1
|
254 |
+
if pad_len < 0:
|
255 |
+
x = start_tokens[:self.sequence_length]
|
256 |
+
sample_index = self.sequence_length - 1
|
257 |
+
elif pad_len > 0:
|
258 |
+
x = start_tokens + [0] * pad_len
|
259 |
+
else:
|
260 |
+
x = start_tokens
|
261 |
+
x = np.array([x])
|
262 |
+
y, _ = self.model.predict(x)
|
263 |
+
sample_token = sample_from(y[0][sample_index])
|
264 |
+
tokens_generated.append(sample_token)
|
265 |
+
start_tokens.append(sample_token)
|
266 |
+
num_tokens_generated = len(tokens_generated)
|
267 |
+
|
268 |
+
generated_notes = [self.int_to_note[num] for num in np.concatenate((start_tokens, tokens_generated))]
|
269 |
+
|
270 |
+
return track_idx, generated_notes
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
def generate_track_batch(self, artist=None):
|
275 |
+
|
276 |
+
self.track_indices = np.zeros(self.NUM_TRACKS_TO_GENERATE)
|
277 |
+
self.tracks = np.zeros(self.NUM_TRACKS_TO_GENERATE, dtype=object)
|
278 |
+
|
279 |
+
|
280 |
+
for i in tqdm(range(self.NUM_TRACKS_TO_GENERATE)):
|
281 |
+
if artist is None:
|
282 |
+
idx, t = self.generate_track()
|
283 |
+
else:
|
284 |
+
idx, t = self.generate_track(track_idx=np.random.choice(list(self.track_data[self.track_data.artist==artist].index)))
|
285 |
+
self.track_indices[i] = idx
|
286 |
+
self.tracks[i] = t
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
def save_tracks(self, filepath='_generation.gp5'):
|
291 |
+
|
292 |
+
songWriter = SongWriter(initialTempo=self.track_data.loc[self.track_indices[0]]['tempo'])
|
293 |
+
|
294 |
+
for idx in range(len(self.tracks)):
|
295 |
+
new_track = adjust_to_4_4(self.tracks[idx])
|
296 |
+
|
297 |
+
# Get the tempo and tuning (lowest string note) of the song:
|
298 |
+
#print( track_data.loc[track_indices[idx]])
|
299 |
+
tempo = self.track_data.loc[self.track_indices[idx]]['tempo']
|
300 |
+
instrument = self.track_data.loc[self.track_indices[idx]]['instrument']
|
301 |
+
name = self.track_data.loc[self.track_indices[idx]]['song']
|
302 |
+
lowest_string = self.track_data.loc[self.track_indices[idx]]['tuning']
|
303 |
+
|
304 |
+
if not self.as_fingerings:
|
305 |
+
# Get all the unique pitch values from the new track
|
306 |
+
pitchnames = set.union(*[set([beat[0].split('_')[0] for beat in measure]) for measure in new_track])
|
307 |
+
pitchnames.discard('rest') # Ignore rests
|
308 |
+
pitchnames.discard('tied') # Ignore tied notes
|
309 |
+
pitchnames.discard('dead') # Ignore dead/ghost notes
|
310 |
+
lowest_string = min([MIDI[pitch] for pitch in pitchnames]) # Get the lowest MIDI value / pitch
|
311 |
+
lowest_string = min(lowest_string, MIDI['E2']) # Don't allow any tunings higher than standard.
|
312 |
+
|
313 |
+
|
314 |
+
# Standard tuning
|
315 |
+
tuning = {1: MIDI['E4'],
|
316 |
+
2: MIDI['B3'],
|
317 |
+
3: MIDI['G3'],
|
318 |
+
4: MIDI['D3'],
|
319 |
+
5: MIDI['A2'],
|
320 |
+
6: MIDI['E2']}
|
321 |
+
|
322 |
+
if lowest_string <= MIDI['B1']:
|
323 |
+
# 7-string guitar case
|
324 |
+
tuning[7] = MIDI['B1']
|
325 |
+
downtune = MIDI['B1'] - lowest_string
|
326 |
+
else:
|
327 |
+
# downtune the tuning by however much is necessary.
|
328 |
+
downtune = MIDI['E2'] - lowest_string
|
329 |
+
|
330 |
+
tuning = {k: v - downtune for k, v in tuning.items()} # Adjust to the new tuning
|
331 |
+
|
332 |
+
# Write the track to the song writer
|
333 |
+
songWriter.decompress_track(new_track, tuning, tempo=tempo, instrument=instrument, name=name, as_fingerings=self.as_fingerings)
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
songWriter.write(filepath)
|
338 |
+
print('Finished')
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
'''
|
349 |
+
|
350 |
+
|
351 |
+
def init_generator():
|
352 |
+
global NUM_TRACKS_TO_GENERATE, notes, note_to_int, int_to_note, n_vocab, track_data, model, ints
|
353 |
+
|
354 |
+
with mgzip.open('data\\notes_data.pickle.gz', 'rb') as filepath:
|
355 |
+
notes = pickle.load(filepath)
|
356 |
+
note_to_int = pickle.load(filepath)
|
357 |
+
int_to_note = pickle.load(filepath)
|
358 |
+
n_vocab = pickle.load(filepath)
|
359 |
+
|
360 |
+
with mgzip.open('data\\track_data.pickle.gz', 'rb') as filepath:
|
361 |
+
track_data = pickle.load(filepath)
|
362 |
+
|
363 |
+
#with mgzip.open('output\\generated_songs.pickle.gz', 'rb') as filepath:
|
364 |
+
# track_indices = pickle.load(filepath)
|
365 |
+
# tracks = pickle.load(filepath)
|
366 |
+
|
367 |
+
model = keras.models.load_model('minigpt')
|
368 |
+
|
369 |
+
ints = np.array([note_to_int[x] for x in notes])
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
def generate_track(track_idx=None):
|
375 |
+
global track_data, ints, int_to_note
|
376 |
+
|
377 |
+
if track_idx is None:
|
378 |
+
# Choose a random track
|
379 |
+
track_idx = np.random.choice(len(track_data))
|
380 |
+
|
381 |
+
# Get the note indices corresponding to the beginning and ending of the track
|
382 |
+
song_note_idx_first = track_data.loc[track_idx]['noteStartIdx']
|
383 |
+
song_note_idx_last = track_data.loc[track_idx+1]['noteStartIdx']
|
384 |
+
|
385 |
+
# Choose a random starting point within the track
|
386 |
+
start_idx = np.random.randint(low=song_note_idx_first,
|
387 |
+
high=song_note_idx_last)
|
388 |
+
|
389 |
+
# Choose a number of initial notes to select from the track, at most 100.
|
390 |
+
#num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
391 |
+
num_initial_notes = np.random.choice(min(100, song_note_idx_last - start_idx))
|
392 |
+
|
393 |
+
# Select the initial notes (tokens)
|
394 |
+
start_tokens = [_ for _ in ints[start_idx:start_idx+num_initial_notes]]
|
395 |
+
|
396 |
+
|
397 |
+
max_tokens = 100
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
def sample_from(logits, top_k=10):
|
402 |
+
logits, indices = tf.math.top_k(logits, k=top_k, sorted=True)
|
403 |
+
indices = np.asarray(indices).astype("int32")
|
404 |
+
preds = keras.activations.softmax(tf.expand_dims(logits, 0))[0]
|
405 |
+
preds = np.asarray(preds).astype("float32")
|
406 |
+
return np.random.choice(indices, p=preds)
|
407 |
+
|
408 |
+
num_tokens_generated = 0
|
409 |
+
tokens_generated = []
|
410 |
+
|
411 |
+
while num_tokens_generated <= max_tokens:
|
412 |
+
pad_len = maxlen - len(start_tokens)
|
413 |
+
sample_index = len(start_tokens) - 1
|
414 |
+
if pad_len < 0:
|
415 |
+
x = start_tokens[:maxlen]
|
416 |
+
sample_index = maxlen - 1
|
417 |
+
elif pad_len > 0:
|
418 |
+
x = start_tokens + [0] * pad_len
|
419 |
+
else:
|
420 |
+
x = start_tokens
|
421 |
+
x = np.array([x])
|
422 |
+
y, _ = model.predict(x)
|
423 |
+
sample_token = sample_from(y[0][sample_index])
|
424 |
+
tokens_generated.append(sample_token)
|
425 |
+
start_tokens.append(sample_token)
|
426 |
+
num_tokens_generated = len(tokens_generated)
|
427 |
+
|
428 |
+
generated_notes = [int_to_note[num] for num in np.concatenate((start_tokens, tokens_generated))]
|
429 |
+
|
430 |
+
return track_idx, generated_notes
|
431 |
+
|
432 |
+
|
433 |
+
|
434 |
+
|
435 |
+
def generate_track_batch(artist=None):
|
436 |
+
global track_indices, tracks, NUM_TRACKS_TO_GENERATE, track_data
|
437 |
+
|
438 |
+
track_indices = np.zeros(NUM_TRACKS_TO_GENERATE)
|
439 |
+
tracks = np.zeros(NUM_TRACKS_TO_GENERATE, dtype=object)
|
440 |
+
|
441 |
+
|
442 |
+
for i in tqdm(range(NUM_TRACKS_TO_GENERATE)):
|
443 |
+
if artist is None:
|
444 |
+
idx, t = generate_track()
|
445 |
+
else:
|
446 |
+
idx, t = generate_track(track_idx=np.random.choice(list(track_data[track_data.artist==artist].index)))
|
447 |
+
track_indices[i] = idx
|
448 |
+
tracks[i] = t
|
449 |
+
|
450 |
+
|
451 |
+
|
452 |
+
|
453 |
+
|
454 |
+
# Generation helper methods:
|
455 |
+
def thirty_seconds_to_duration(count):
|
456 |
+
if count % 3 == 0:
|
457 |
+
# If the note is dotted, do 32 / (i * 2/3), and return isDotted = True.
|
458 |
+
return (48//count, True)
|
459 |
+
else:
|
460 |
+
# If the note is not dotted, to 32 / i, and return isDotted = False.
|
461 |
+
return (32//count, False)
|
462 |
+
|
463 |
+
|
464 |
+
def quantize_thirty_seconds(value):
|
465 |
+
|
466 |
+
# 32nd-note values of each fundamental type of note (not including 64th-notes, of course).
|
467 |
+
vals = np.array([32, # whole
|
468 |
+
24, # dotted half
|
469 |
+
16, # half
|
470 |
+
12, # dotted quarter
|
471 |
+
8, # quarter
|
472 |
+
6, # dotted eigth
|
473 |
+
4, # eigth
|
474 |
+
3, # dotted sixteenth
|
475 |
+
2, # sixteenth
|
476 |
+
1]) # thirty-second
|
477 |
+
|
478 |
+
list_out = []
|
479 |
+
|
480 |
+
for v in vals:
|
481 |
+
if v <= value:
|
482 |
+
list_out.append(thirty_seconds_to_duration(v))
|
483 |
+
value -= v
|
484 |
+
|
485 |
+
return np.array(list_out)
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
def adjust_to_4_4(prediction_output):
|
491 |
+
|
492 |
+
#Adjust prediction output to be in 4/4 time.
|
493 |
+
#Then, separate the beats into measures.
|
494 |
+
|
495 |
+
|
496 |
+
# This will be the prediction output
|
497 |
+
new_prediction_output = []
|
498 |
+
|
499 |
+
|
500 |
+
time = 0
|
501 |
+
for beat in prediction_output:
|
502 |
+
|
503 |
+
# Calculate the fraction of a measure encompassed by the current beat / chord.
|
504 |
+
beat_time = (1 / beat[1]) * (1 + 0.5 * beat[2])
|
505 |
+
|
506 |
+
# Calculate the fraction of a measure taken up by all notes in the measure.
|
507 |
+
# Calculate any residual time to see if this measure (in 4/4 time) is longer than 1 measure.
|
508 |
+
measure_time = time + beat_time
|
509 |
+
leftover_time = (measure_time) % 1
|
510 |
+
|
511 |
+
# If the measure count (i.e., the measure integer) has changed and there is significant left-over beat time:
|
512 |
+
if (int(measure_time) > int(time)) and (leftover_time > 1/128):
|
513 |
+
|
514 |
+
# Calculate the initial 32nd notes encompassed by this beat in the current measure.
|
515 |
+
this_measure_thirty_seconds = int(32 * (1 - time % 1))
|
516 |
+
# Calculate the remaining 32nd notes encompassed by this beat in the next measure.
|
517 |
+
next_measure_thirty_seconds = int(32 * leftover_time)
|
518 |
+
|
519 |
+
# Get the Duration object parameters for this measure and the next measure.
|
520 |
+
this_measure_durations = quantize_thirty_seconds(this_measure_thirty_seconds)
|
521 |
+
next_measure_durations = quantize_thirty_seconds(next_measure_thirty_seconds)
|
522 |
+
|
523 |
+
|
524 |
+
#print(f'{{ {32 / beat[1]}')
|
525 |
+
for duration_idx, duration in enumerate(this_measure_durations):
|
526 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
527 |
+
|
528 |
+
#print(time, '\t', time * 32)
|
529 |
+
|
530 |
+
chord = beat[0] if duration_idx == 0 else 'tied'
|
531 |
+
|
532 |
+
new_prediction_output.append((chord, duration[0], duration[1]))
|
533 |
+
|
534 |
+
|
535 |
+
for duration in next_measure_durations:
|
536 |
+
time += (1 / duration[0]) * (1 + 0.5 * duration[1])
|
537 |
+
|
538 |
+
#print(time, '\t', time * 32)
|
539 |
+
|
540 |
+
new_prediction_output.append(('tied', duration[0], duration[1]))
|
541 |
+
|
542 |
+
|
543 |
+
continue
|
544 |
+
|
545 |
+
|
546 |
+
time += beat_time
|
547 |
+
new_prediction_output.append((beat[0], beat[1], beat[2]))
|
548 |
+
|
549 |
+
#print(time, '\t', time * 32)
|
550 |
+
|
551 |
+
|
552 |
+
|
553 |
+
# Code for debugging
|
554 |
+
|
555 |
+
#time = 0
|
556 |
+
#time2 = 0
|
557 |
+
#idx = 0
|
558 |
+
|
559 |
+
#for idx2, beat2 in enumerate(new_prediction_output[:100]):
|
560 |
+
# beat = prediction_output[idx]
|
561 |
+
|
562 |
+
# if time == time2:
|
563 |
+
# print(beat[0], '\t', time, '\t\t', beat2[0], '\t', time2)
|
564 |
+
|
565 |
+
# idx += 1
|
566 |
+
|
567 |
+
# time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
568 |
+
|
569 |
+
# else:
|
570 |
+
# print('\t\t\t\t', beat2[0], '\t', time2)
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
# time2 += (1 / beat2[1]) * (1 + 0.5 * beat2[2])
|
575 |
+
|
576 |
+
|
577 |
+
# Use the previously calculated cumulative time as the number of measures in the new 4/4 song.
|
578 |
+
num_measures = int(np.ceil(time))
|
579 |
+
|
580 |
+
song = np.empty(num_measures, dtype=object)
|
581 |
+
|
582 |
+
time = 0
|
583 |
+
m_idx = 0
|
584 |
+
|
585 |
+
timestamps = []
|
586 |
+
|
587 |
+
for beat in new_prediction_output:
|
588 |
+
#print(time)
|
589 |
+
timestamps.append(time)
|
590 |
+
|
591 |
+
m_idx = int(time)
|
592 |
+
|
593 |
+
if song[m_idx] is None:
|
594 |
+
|
595 |
+
song[m_idx] = [beat]
|
596 |
+
else:
|
597 |
+
song[m_idx].append(beat)
|
598 |
+
|
599 |
+
|
600 |
+
time += (1 / beat[1]) * (1 + 0.5 * beat[2])
|
601 |
+
|
602 |
+
|
603 |
+
print(f'4/4 adjusted correctly: {set(range(num_measures)).issubset(set(timestamps))}')
|
604 |
+
|
605 |
+
return song
|
606 |
+
|
607 |
+
|
608 |
+
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
def save_tracks(filepath='_generation.gp5'):
|
613 |
+
global track_data, track_indice, tracks
|
614 |
+
|
615 |
+
songWriter = SongWriter(initialTempo=track_data.loc[track_indices[0]]['tempo'])
|
616 |
+
|
617 |
+
for idx in range(len(tracks)):
|
618 |
+
new_track = adjust_to_4_4(tracks[idx])
|
619 |
+
|
620 |
+
# Get the tempo and tuning (lowest string note) of the song:
|
621 |
+
#print( track_data.loc[track_indices[idx]])
|
622 |
+
tempo = track_data.loc[track_indices[idx]]['tempo']
|
623 |
+
instrument = track_data.loc[track_indices[idx]]['instrument']
|
624 |
+
name = track_data.loc[track_indices[idx]]['song']
|
625 |
+
lowest_string = track_data.loc[track_indices[idx]]['tuning']
|
626 |
+
|
627 |
+
if not as_fingerings:
|
628 |
+
# Get all the unique pitch values from the new track
|
629 |
+
pitchnames = set.union(*[set([beat[0].split('_')[0] for beat in measure]) for measure in new_track])
|
630 |
+
pitchnames.discard('rest') # Ignore rests
|
631 |
+
pitchnames.discard('tied') # Ignore tied notes
|
632 |
+
pitchnames.discard('dead') # Ignore dead/ghost notes
|
633 |
+
lowest_string = min([MIDI[pitch] for pitch in pitchnames]) # Get the lowest MIDI value / pitch
|
634 |
+
lowest_string = min(lowest_string, MIDI['E2']) # Don't allow any tunings higher than standard.
|
635 |
+
|
636 |
+
|
637 |
+
# Standard tuning
|
638 |
+
tuning = {1: MIDI['E4'],
|
639 |
+
2: MIDI['B3'],
|
640 |
+
3: MIDI['G3'],
|
641 |
+
4: MIDI['D3'],
|
642 |
+
5: MIDI['A2'],
|
643 |
+
6: MIDI['E2']}
|
644 |
+
|
645 |
+
if lowest_string <= MIDI['B1']:
|
646 |
+
# 7-string guitar case
|
647 |
+
tuning[7] = MIDI['B1']
|
648 |
+
downtune = MIDI['B1'] - lowest_string
|
649 |
+
else:
|
650 |
+
# downtune the tuning by however much is necessary.
|
651 |
+
downtune = MIDI['E2'] - lowest_string
|
652 |
+
|
653 |
+
tuning = {k: v - downtune for k, v in tuning.items()} # Adjust to the new tuning
|
654 |
+
|
655 |
+
# Write the track to the song writer
|
656 |
+
songWriter.decompress_track(new_track, tuning, tempo=tempo, instrument=instrument, name=name, as_fingerings=as_fingerings)
|
657 |
+
|
658 |
+
|
659 |
+
|
660 |
+
songWriter.write(filepath)
|
661 |
+
print('Finished')
|
662 |
+
'''
|