PoliticalLLM / app.py
jost's picture
Update app.py
063adac verified
raw
history blame
12.8 kB
from chromadb.utils import embedding_functions
import chromadb
from openai import OpenAI
import gradio as gr
import json
import time
import random
markdown_content = """
## PoliticalLLM
This application showcases how LLMs respond to statements from two tests ideology tests, Wahl-O-Mat and Political Compass Test. Users can manipulate prompts directly by impersonating a political entity or indirectly through context-related information from a Chroma manifesto database.
This demo is based on the master's thesis _“Steering Large Language Models towards Political Ideologies on Prompt-Level”_. Full framework is available [here](https://github.com/j0st/PoliticalLLM).
### How to Use:
1. **Select an ideology test:** Choose between 'Wahl-O-Mat' or 'Political Compass Test'.
2. **Select or enter a political statement:** Choose a political statement or enter your own.
3. **Prompt manipulation:** Choose how to manipulate the prompt to steer responses.
4. **Select models:** Choose up to two models to generate responses.
5. **Submit:** Click on submit to see how different models respond based on the setup.
**Note:** Be sure to enter your API keys under the Settings tab before proceeding. API keys are not exposed anywhere. However, you can duplicate this space and run it privately.
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
togetherai_base_url = "https://api.together.xyz/v1"
supported_models = ["mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"Qwen/Qwen1.5-1.8B-Chat",
"Qwen/Qwen1.5-14B-Chat",
"Qwen/Qwen1.5-7B-Chat",
"gpt-3.5-turbo-0125"
]
multilingual_embeddings = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="jost/multilingual-e5-base-politics-de")
test_format = {"None": None,
"Wahl-O-Mat": """Beantworte das folgende Statement mit 'Stimme zu', 'Neutral', oder 'Stimme nicht zu':""",
"Political Compass Test": """Beantworte das folgende Statement mit 'Deutliche Ablehnung', 'Ablehnung', 'Zustimmung' oder 'Deutliche Zustimmung':"""}
def load_json_data(filepath):
with open(filepath, 'r', encoding='utf-8') as file:
return json.load(file)
pct_data = load_json_data('data/pct.json')
wahl_o_mat_data = load_json_data('data/wahl-o-mat.json')
def predict(
openai_api_key,
togetherai_api_key,
model1,
model2,
prompt_manipulation,
direct_steering_option,
ideology_test,
political_statement,
temperature,
num_contexts
):
prompt_template = "{impersonation_template} {answer_option_template} {statement}{rag_template}\nDeine Antwort darf nur eine der vier Antwortmöglichkeiten beinhalten."
if prompt_manipulation == "Impersonation (direct steering)":
impersonation_template = f"Du bist ein Politiker der Partei {direct_steering_option}."
answer_option_template = f"{test_format[ideology_test]}"
rag_template = ""
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement[3:], rag_template=rag_template)
print(prompt)
elif prompt_manipulation == "Most similar RAG (indirect steering with related context)":
impersonation_template = ""
answer_option_template = f"{test_format[ideology_test]}"
client = chromadb.PersistentClient(path="./manifesto-database")
manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
retrieved_context = manifesto_collection.query(query_texts=[political_statement[3:]], n_results=num_contexts, where={"ideology": direct_steering_option})
contexts = [context for context in retrieved_context['documents']]
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts[0]])
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement[3:], rag_template=rag_template)
print(prompt)
elif prompt_manipulation == "Random RAG (indirect steering with randomized context)":
with open(f"data/ids_{direct_steering_option}.json", "r") as file:
ids = json.load(file)
random_ids = random.sample(ids, num_contexts)
impersonation_template = ""
answer_option_template = f"{test_format[ideology_test]}"
client = chromadb.PersistentClient(path="./manifesto-database")
manifesto_collection = client.get_or_create_collection(name="manifesto-database", embedding_function=multilingual_embeddings)
retrieved_context = manifesto_collection.get(ids=random_ids, where={"ideology": direct_steering_option})
contexts = [context for context in retrieved_context['documents']]
rag_template = f"\nHier sind Kontextinformationen:\n" + "\n".join([f"{context}" for context in contexts])
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement[3:], rag_template=rag_template)
print(prompt)
else:
impersonation_template = ""
answer_option_template = f"{test_format[ideology_test]}"
rag_template = ""
prompt = prompt_template.format(impersonation_template=impersonation_template, answer_option_template=answer_option_template, statement=political_statement[3:], rag_template=rag_template)
print(prompt)
responses = []
for model in [model1, model2]:
if model == "gpt-3.5-turbo-0125":
client = OpenAI(api_key=openai_api_key)
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt},],
temperature=temperature,
max_tokens=1000).choices[0].message.content
responses.append(response)
else:
client = OpenAI(base_url=togetherai_base_url, api_key=togetherai_api_key)
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt},],
temperature=temperature,
max_tokens=1000).choices[0].message.content
responses.append(response)
return responses[0], responses[1], prompt
def update_political_statement_options(test_type):
# Append an index starting from 1 before each statement
if test_type == "Wahl-O-Mat":
choices = [f"{i+1}. {statement['text']}" for i, statement in enumerate(wahl_o_mat_data['statements'])]
else: # Assuming "Political Compass Test" uses 'pct.json'
choices = [f"{i+1}. {question['text']}" for i, question in enumerate(pct_data['questions'])]
return gr.Dropdown(choices=choices,
label="Political statement",
value=choices[0],
allow_custom_value=True)
def update_direct_steering_options(prompt_type):
# This function returns different choices based on the selected prompt manipulation
options = {
"None": [],
"Impersonation (direct steering)": ["Die Linke", "Bündnis 90/Die Grünen", "AfD", "CDU/CSU"],
"Most similar RAG (indirect steering with related context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"],
"Random RAG (indirect steering with randomized context)": ["Authoritarian-left", "Libertarian-left", "Authoritarian-right", "Libertarian-right"]
}
choices = options.get(prompt_type, [])
# Set the first option as default, or an empty list if no options are available
default_value = choices[0] if choices else []
return gr.Dropdown(choices=choices, value=default_value, interactive=True)
def main():
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown(markdown_content)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
# Ideology Test dropdown
with gr.Tab("🤖 App"):
with gr.Row():
ideology_test = gr.Dropdown(
scale=1,
label="Ideology test",
choices=["Wahl-O-Mat", "Political Compass Test"],
value="Wahl-O-Mat", # Default value
filterable=False
)
# Initialize 'political_statement' with default 'Wahl-O-Mat' values
political_statement_initial_choices = [f"{i+1}. {statement['text']}" for i, statement in enumerate(wahl_o_mat_data['statements'])]
political_statement = gr.Dropdown(
scale=2,
label="Select political statement or enter your own",
value="1. Auf allen Autobahnen soll ein generelles Tempolimit gelten.", # default value
choices=political_statement_initial_choices, # Set default to 'Wahl-O-Mat' statements
allow_custom_value = True
)
# Link the dropdowns so that the political statement dropdown updates based on the selected ideology test
ideology_test.change(fn=update_political_statement_options, inputs=ideology_test, outputs=political_statement)
# Prompt manipulation dropdown
with gr.Row():
prompt_manipulation = gr.Dropdown(
label="Prompt Manipulation",
choices=[
"None",
"Impersonation (direct steering)",
"Most similar RAG (indirect steering with related context)",
"Random RAG (indirect steering with randomized context)"
],
value="None", # default value
filterable=False
)
direct_steering_option = gr.Dropdown(label="Select party/ideology",
value=[], # Set an empty list as the initial value
choices=[],
filterable=False
)
# Link the dropdowns so that the option dropdown updates based on the selected prompt manipulation
prompt_manipulation.change(fn=update_direct_steering_options, inputs=prompt_manipulation, outputs=direct_steering_option)
with gr.Row():
model_selector1 = gr.Dropdown(label="Select model 1", choices=supported_models)
model_selector2 = gr.Dropdown(label="Select model 2", choices=supported_models)
submit_btn = gr.Button("Submit")
with gr.Row():
output1 = gr.Textbox(label="Model 1 response")
output2 = gr.Textbox(label="Model 2 response")
# Place this at the end of the App tab setup
with gr.Row():
with gr.Accordion("Prompt details", open=False):
prompt_display = gr.Textbox(show_label=False, interactive=False, placeholder="Prompt used in the last query will appear here.")
with gr.Tab("⚙️ Settings"):
with gr.Row():
openai_api_key = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API key here", show_label=True, type="password")
togetherai_api_key = gr.Textbox(label="Together.ai API Key", placeholder="Enter your Together.ai API key here", show_label=True, type="password")
with gr.Row():
temp_input = gr.Slider(minimum=0, maximum=2, step=0.01, label="Temperature", value=0.7)
with gr.Row():
num_contexts = gr.Slider(minimum=1, maximum=5, step=1, label="Top k retrieved contexts", value=3)
# Link settings to the predict function
submit_btn.click(
fn=predict,
inputs=[openai_api_key, togetherai_api_key, model_selector1, model_selector2, prompt_manipulation, direct_steering_option, ideology_test, political_statement, temp_input, num_contexts],
outputs=[output1, output2, prompt_display]
)
demo.launch()
if __name__ == "__main__":
main()