Spaces:
Runtime error
Runtime error
jositonaranja
commited on
Commit
•
6e86492
1
Parent(s):
520a5a8
Update app.py
Browse files
app.py
CHANGED
@@ -43,40 +43,13 @@ def show_images(batch: th.Tensor):
|
|
43 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
44 |
display(Image.fromarray(reshaped.numpy()))
|
45 |
# Sampling parameters
|
46 |
-
prompt = "an oil painting of a corgi"
|
47 |
batch_size = 1
|
48 |
guidance_scale = 3.0
|
49 |
|
50 |
# Tune this parameter to control the sharpness of 256x256 images.
|
51 |
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
52 |
upsample_temp = 0.997
|
53 |
-
##############################
|
54 |
-
# Sample from the base model #
|
55 |
-
##############################
|
56 |
|
57 |
-
# Create the text tokens to feed to the model.
|
58 |
-
tokens = model.tokenizer.encode(prompt)
|
59 |
-
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
60 |
-
tokens, options['text_ctx']
|
61 |
-
)
|
62 |
-
|
63 |
-
# Create the classifier-free guidance tokens (empty)
|
64 |
-
full_batch_size = batch_size * 2
|
65 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
66 |
-
[], options['text_ctx']
|
67 |
-
)
|
68 |
-
|
69 |
-
# Pack the tokens together into model kwargs.
|
70 |
-
model_kwargs = dict(
|
71 |
-
tokens=th.tensor(
|
72 |
-
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
73 |
-
),
|
74 |
-
mask=th.tensor(
|
75 |
-
[mask] * batch_size + [uncond_mask] * batch_size,
|
76 |
-
dtype=th.bool,
|
77 |
-
device=device,
|
78 |
-
),
|
79 |
-
)
|
80 |
|
81 |
# Create a classifier-free guidance sampling function
|
82 |
def model_fn(x_t, ts, **kwargs):
|
@@ -89,7 +62,35 @@ def model_fn(x_t, ts, **kwargs):
|
|
89 |
eps = th.cat([half_eps, half_eps], dim=0)
|
90 |
return th.cat([eps, rest], dim=1)
|
91 |
|
92 |
-
def run():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
print('run():')
|
|
|
43 |
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
44 |
display(Image.fromarray(reshaped.numpy()))
|
45 |
# Sampling parameters
|
|
|
46 |
batch_size = 1
|
47 |
guidance_scale = 3.0
|
48 |
|
49 |
# Tune this parameter to control the sharpness of 256x256 images.
|
50 |
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
51 |
upsample_temp = 0.997
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Create a classifier-free guidance sampling function
|
55 |
def model_fn(x_t, ts, **kwargs):
|
|
|
62 |
eps = th.cat([half_eps, half_eps], dim=0)
|
63 |
return th.cat([eps, rest], dim=1)
|
64 |
|
65 |
+
def run(prompt):
|
66 |
+
|
67 |
+
##############################
|
68 |
+
# Sample from the base model #
|
69 |
+
##############################
|
70 |
+
|
71 |
+
# Create the text tokens to feed to the model.
|
72 |
+
tokens = model.tokenizer.encode(prompt)
|
73 |
+
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
74 |
+
tokens, options['text_ctx']
|
75 |
+
)
|
76 |
+
|
77 |
+
# Create the classifier-free guidance tokens (empty)
|
78 |
+
full_batch_size = batch_size * 2
|
79 |
+
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
80 |
+
[], options['text_ctx']
|
81 |
+
)
|
82 |
+
|
83 |
+
# Pack the tokens together into model kwargs.
|
84 |
+
model_kwargs = dict(
|
85 |
+
tokens=th.tensor(
|
86 |
+
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
87 |
+
),
|
88 |
+
mask=th.tensor(
|
89 |
+
[mask] * batch_size + [uncond_mask] * batch_size,
|
90 |
+
dtype=th.bool,
|
91 |
+
device=device,
|
92 |
+
),
|
93 |
+
)
|
94 |
|
95 |
|
96 |
print('run():')
|