Spaces:
Sleeping
Sleeping
from ultralytics import YOLO | |
from ultralytics.utils.plotting import Annotator | |
import torch | |
import gradio as gr | |
import cv2 | |
model = YOLO('best.pt') | |
def yolo_pred(image): | |
result = model.predict(image)[0] | |
annotator = Annotator(result.orig_img) | |
color_list = [(107, 31, 45), (32, 102, 50), (32, 45, 102)] | |
for label in result.boxes.data.detach().numpy(): | |
annotator.box_label( | |
label[0:4], | |
str(result.names[label[-1].item()]) + " " + str(round(label[-2], 2)), | |
color_list[int(label[-1].item())] | |
) | |
print(round(label[-2], 2)) | |
return annotator.im | |
gr.Interface(fn=yolo_pred, | |
inputs="image", | |
outputs="image", | |
examples=[ | |
[cv2.imread("example1.jpg")], | |
[cv2.imread("example2.jpg")], | |
[cv2.imread("example3.jpg")], | |
], | |
title="Fine-Tuned YOLOv8", | |
description="""YOLOv8 object detection model trained on the Tsinghua-Daimler Cyclist Benchmark (TDCB). | |
Since the setting of their image collection seems to be an early morning in China, | |
please sample similar images for the best results. I recommend using images from TDCB's | |
Kaggle clone here: https://www.kaggle.com/datasets/semiemptyglass/cyclist-dataset.""" | |
).launch() |