TwoWheels / app.py
joshlicoding's picture
added title and descriptoin
24106d7
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator
import torch
import gradio as gr
import cv2
model = YOLO('best.pt')
def yolo_pred(image):
result = model.predict(image)[0]
annotator = Annotator(result.orig_img)
color_list = [(107, 31, 45), (32, 102, 50), (32, 45, 102)]
for label in result.boxes.data.detach().numpy():
annotator.box_label(
label[0:4],
str(result.names[label[-1].item()]) + " " + str(round(label[-2], 2)),
color_list[int(label[-1].item())]
)
print(round(label[-2], 2))
return annotator.im
gr.Interface(fn=yolo_pred,
inputs="image",
outputs="image",
examples=[
[cv2.imread("example1.jpg")],
[cv2.imread("example2.jpg")],
[cv2.imread("example3.jpg")],
],
title="Fine-Tuned YOLOv8",
description="""YOLOv8 object detection model trained on the Tsinghua-Daimler Cyclist Benchmark (TDCB).
Since the setting of their image collection seems to be an early morning in China,
please sample similar images for the best results. I recommend using images from TDCB's
Kaggle clone here: https://www.kaggle.com/datasets/semiemptyglass/cyclist-dataset."""
).launch()