joselobenitezg commited on
Commit
5f51879
·
1 Parent(s): 9930f16

set tf32 matmul

Browse files
Files changed (3) hide show
  1. inference/depth.py +3 -112
  2. inference/normal.py +3 -96
  3. inference/pose.py +0 -82
inference/depth.py CHANGED
@@ -1,115 +1,3 @@
1
- # # Example usage
2
- # import torch
3
- # import numpy as np
4
- # from PIL import Image
5
- # from torchvision import transforms
6
- # from config import LABELS_TO_IDS
7
- # from utils.vis_utils import visualize_mask_with_overlay
8
-
9
- # import torch
10
- # import torch.nn.functional as F
11
- # import numpy as np
12
- # import cv2
13
-
14
- # TASK = 'depth'
15
- # VERSION = 'sapiens_0.3b'
16
-
17
- # model_path = get_model_path(TASK, VERSION)
18
- # print(model_path)
19
-
20
- # model = torch.jit.load(model_path)
21
- # model.eval()
22
- # model.to("cuda")
23
-
24
-
25
- # def get_depth(image, depth_model, input_shape=(3, 1024, 768), device="cuda"):
26
- # # Preprocess the image
27
- # img = preprocess_image(image, input_shape)
28
-
29
- # # Run the model
30
- # with torch.no_grad():
31
- # result = depth_model(img.to(device))
32
-
33
- # # Post-process the output
34
- # depth_map = post_process_depth(result, (image.shape[0], image.shape[1]))
35
-
36
- # # Visualize the depth map
37
- # depth_image = visualize_depth(depth_map)
38
-
39
- # return depth_image, depth_map
40
-
41
- # def preprocess_image(image, input_shape):
42
- # img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
43
- # img = torch.from_numpy(img)
44
- # img = img[[2, 1, 0], ...].float()
45
- # mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
46
- # std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
47
- # img = (img - mean) / std
48
- # return img.unsqueeze(0)
49
-
50
- # def post_process_depth(result, original_shape):
51
- # # Check the dimensionality of the result
52
- # if result.dim() == 3:
53
- # result = result.unsqueeze(0)
54
- # elif result.dim() == 4:
55
- # pass
56
- # else:
57
- # raise ValueError(f"Unexpected result dimension: {result.dim()}")
58
-
59
- # # Ensure we're interpolating to the correct dimensions
60
- # seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
61
- # depth_map = seg_logits.data.float().cpu().numpy()
62
-
63
- # # If depth_map has an extra dimension, squeeze it
64
- # if depth_map.ndim == 3 and depth_map.shape[0] == 1:
65
- # depth_map = depth_map.squeeze(0)
66
-
67
- # return depth_map
68
-
69
- # def visualize_depth(depth_map):
70
- # # Normalize the depth map
71
- # min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
72
- # depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
73
-
74
- # # Convert to uint8
75
- # depth_normalized = (depth_normalized * 255).astype(np.uint8)
76
-
77
- # # Apply colormap
78
- # depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
79
-
80
- # return depth_colored
81
-
82
- # # You can add the surface normal calculation if needed
83
- # def calculate_surface_normal(depth_map):
84
- # kernel_size = 7
85
- # grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
86
- # grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
87
- # z = np.full(grad_x.shape, -1)
88
- # normals = np.dstack((-grad_x, -grad_y, z))
89
-
90
- # normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
91
- # with np.errstate(divide="ignore", invalid="ignore"):
92
- # normals_normalized = normals / (normals_mag + 1e-5)
93
-
94
- # normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
95
- # normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
96
- # normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
97
-
98
- # return normal_from_depth
99
-
100
- # from utils.vis_utils import resize_image
101
-
102
- # pil_image = Image.open('/home/user/app/assets/image.webp')
103
-
104
- # # Load and process an image
105
- # image = cv2.imread('/home/user/app/assets/frame.png')
106
- # depth_image, depth_map = get_depth(image, model)
107
-
108
- # surface_normal = calculate_surface_normal(depth_map)
109
- # cv2.imwrite("output_surface_normal.jpg", surface_normal)
110
- # # Save the results
111
- # output_im = cv2.imwrite("output_depth_image2.jpg", depth_image)
112
-
113
  import torch
114
  import torch.nn.functional as F
115
  import numpy as np
@@ -121,6 +9,9 @@ def load_model(task, version):
121
  try:
122
  model_path = SAPIENS_LITE_MODELS_PATH[task][version]
123
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
 
124
  model = torch.jit.load(model_path)
125
  model.eval()
126
  model.to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  import torch.nn.functional as F
3
  import numpy as np
 
9
  try:
10
  model_path = SAPIENS_LITE_MODELS_PATH[task][version]
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
13
+ torch.backends.cuda.matmul.allow_tf32 = True
14
+ torch.backends.cudnn.allow_tf32 = True
15
  model = torch.jit.load(model_path)
16
  model.eval()
17
  model.to(device)
inference/normal.py CHANGED
@@ -1,99 +1,3 @@
1
- # import torch
2
- # import torch.nn.functional as F
3
- # import numpy as np
4
- # import cv2
5
- # from PIL import Image
6
- # from config import SAPIENS_LITE_MODELS_PATH
7
-
8
- # # Example usage
9
- # TASK = 'normal'
10
- # VERSION = 'sapiens_0.3b'
11
-
12
- # model_path = get_model_path(TASK, VERSION)
13
- # print(model_path)
14
-
15
- # model = torch.jit.load(model_path)
16
- # model.eval()
17
- # model.to("cuda")
18
-
19
- # import torch
20
- # import torch.nn.functional as F
21
- # import numpy as np
22
- # import cv2
23
-
24
- # def get_normal(image, normal_model, input_shape=(3, 1024, 768), device="cuda"):
25
- # # Preprocess the image
26
- # img = preprocess_image(image, input_shape)
27
-
28
- # # Run the model
29
- # with torch.no_grad():
30
- # result = normal_model(img.to(device))
31
-
32
- # # Post-process the output
33
- # normal_map = post_process_normal(result, (image.shape[0], image.shape[1]))
34
-
35
- # # Visualize the normal map
36
- # normal_image = visualize_normal(normal_map)
37
-
38
- # return normal_image, normal_map
39
-
40
- # def preprocess_image(image, input_shape):
41
- # img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
42
- # img = torch.from_numpy(img)
43
- # img = img[[2, 1, 0], ...].float()
44
- # mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
45
- # std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
46
- # img = (img - mean) / std
47
- # return img.unsqueeze(0)
48
-
49
- # def post_process_normal(result, original_shape):
50
- # # Check the dimensionality of the result
51
- # if result.dim() == 3:
52
- # result = result.unsqueeze(0)
53
- # elif result.dim() == 4:
54
- # pass
55
- # else:
56
- # raise ValueError(f"Unexpected result dimension: {result.dim()}")
57
-
58
- # # Ensure we're interpolating to the correct dimensions
59
- # seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
60
- # normal_map = seg_logits.float().cpu().numpy().transpose(1, 2, 0) # H x W x 3
61
- # return normal_map
62
-
63
- # def visualize_normal(normal_map):
64
- # normal_map_norm = np.linalg.norm(normal_map, axis=-1, keepdims=True)
65
- # normal_map_normalized = normal_map / (normal_map_norm + 1e-5) # Add a small epsilon to avoid division by zero
66
-
67
- # # Convert to 0-255 range and BGR format for visualization
68
- # normal_map_vis = ((normal_map_normalized + 1) / 2 * 255).astype(np.uint8)
69
- # normal_map_vis = normal_map_vis[:, :, ::-1] # RGB to BGR
70
-
71
- # return normal_map_vis
72
-
73
- # def load_normal_model(checkpoint, use_torchscript=False):
74
- # if use_torchscript:
75
- # return torch.jit.load(checkpoint)
76
- # else:
77
- # model = torch.export.load(checkpoint).module()
78
- # model = model.to("cuda")
79
- # model = torch.compile(model, mode="max-autotune", fullgraph=True)
80
- # return model
81
-
82
- # import cv2
83
- # import numpy as np
84
-
85
- # # Load the model
86
- # normal_model = load_normal_model(model_path, use_torchscript='_torchscript')
87
-
88
- # # Load the image
89
- # image = cv2.imread("/home/user/app/assets/image.webp")
90
-
91
- # # Get the normal map and visualization
92
- # normal_image, normal_map = get_normal(image, normal_model)
93
-
94
- # # Save the results
95
- # cv2.imwrite("output_normal_image.png", normal_image)
96
-
97
  import torch
98
  import torch.nn.functional as F
99
  import numpy as np
@@ -105,6 +9,9 @@ def load_model(task, version):
105
  try:
106
  model_path = SAPIENS_LITE_MODELS_PATH[task][version]
107
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
 
108
  model = torch.jit.load(model_path)
109
  model.eval()
110
  model.to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  import torch.nn.functional as F
3
  import numpy as np
 
9
  try:
10
  model_path = SAPIENS_LITE_MODELS_PATH[task][version]
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ if torch.cuda.is_available() and torch.cuda.get_device_properties(0).major >= 8:
13
+ torch.backends.cuda.matmul.allow_tf32 = True
14
+ torch.backends.cudnn.allow_tf32 = True
15
  model = torch.jit.load(model_path)
16
  model.eval()
17
  model.to(device)
inference/pose.py CHANGED
@@ -1,85 +1,3 @@
1
- # import torch
2
- # import numpy as np
3
- # from PIL import Image
4
- # from torchvision import transforms
5
- # from config import LABELS_TO_IDS
6
- # from utils.vis_utils import visualize_mask_with_overlay
7
-
8
- # # Example usage
9
- # TASK = 'pose'
10
- # VERSION = 'sapiens_1b'
11
-
12
- # model_path = get_model_path(TASK, VERSION)
13
- # print(model_path)
14
-
15
- # model = torch.jit.load(model_path)
16
- # model.eval()
17
- # model.to("cuda")
18
-
19
- # def get_pose(image, pose_estimator, input_shape=(3, 1024, 768), device="cuda"):
20
- # # Preprocess the image
21
- # img = preprocess_image(image, input_shape)
22
-
23
- # # Run the model
24
- # with torch.no_grad():
25
- # heatmap = pose_estimator(img.to(device))
26
-
27
- # # Post-process the output
28
- # keypoints, keypoint_scores = udp_decode(heatmap[0].cpu().float().numpy(),
29
- # input_shape[1:],
30
- # (input_shape[1] // 4, input_shape[2] // 4))
31
-
32
- # # Scale keypoints to original image size
33
- # scale_x = image.width / input_shape[2]
34
- # scale_y = image.height / input_shape[1]
35
- # keypoints[:, 0] *= scale_x
36
- # keypoints[:, 1] *= scale_y
37
-
38
- # # Visualize the keypoints on the original image
39
- # pose_image = visualize_keypoints(image, keypoints, keypoint_scores)
40
- # return pose_image
41
-
42
- # def preprocess_image(image, input_shape):
43
- # # Resize and normalize the image
44
- # img = image.resize((input_shape[2], input_shape[1]))
45
- # img = np.array(img).transpose(2, 0, 1)
46
- # img = torch.from_numpy(img).float()
47
- # img = img[[2, 1, 0], ...] # RGB to BGR
48
- # mean = torch.tensor([123.675, 116.28, 103.53]).view(3, 1, 1)
49
- # std = torch.tensor([58.395, 57.12, 57.375]).view(3, 1, 1)
50
- # img = (img - mean) / std
51
- # return img.unsqueeze(0)
52
-
53
- # def udp_decode(heatmap, img_size, heatmap_size):
54
- # # This is a simplified version. You might need to implement the full UDP decode logic
55
- # h, w = heatmap_size
56
- # keypoints = np.zeros((heatmap.shape[0], 2))
57
- # keypoint_scores = np.zeros(heatmap.shape[0])
58
-
59
- # for i in range(heatmap.shape[0]):
60
- # hm = heatmap[i]
61
- # idx = np.unravel_index(np.argmax(hm), hm.shape)
62
- # keypoints[i] = [idx[1] * img_size[1] / w, idx[0] * img_size[0] / h]
63
- # keypoint_scores[i] = hm[idx]
64
-
65
- # return keypoints, keypoint_scores
66
-
67
- # def visualize_keypoints(image, keypoints, keypoint_scores, threshold=0.3):
68
- # draw = ImageDraw.Draw(image)
69
- # for (x, y), score in zip(keypoints, keypoint_scores):
70
- # if score > threshold:
71
- # draw.ellipse([(x-2, y-2), (x+2, y+2)], fill='red', outline='red')
72
- # return image
73
-
74
- # from utils.vis_utils import resize_image
75
- # pil_image = Image.open('/home/user/app/assets/image.webp')
76
-
77
- # if pil_image.mode == 'RGBA':
78
- # pil_image = pil_image.convert('RGB')
79
-
80
- # output_pose = get_pose(resized_pil_image, model)
81
-
82
- # output_pose
83
  import torch
84
  import numpy as np
85
  from PIL import Image, ImageDraw
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  import numpy as np
3
  from PIL import Image, ImageDraw