Spaces:
Runtime error
Runtime error
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HybridNets: End2End Perception Network
|
2 |
+
|
3 |
+
|
4 |
+
<div align="center">
|
5 |
+
|
6 |
+

|
7 |
+
**HybridNets Network Architecture.**
|
8 |
+
|
9 |
+
[](https://github.com/datvuthanh/HybridNets/blob/main/LICENSE)
|
10 |
+
[](https://pytorch.org/get-started/locally/)
|
11 |
+
[](https://www.python.org/downloads/)
|
12 |
+
<br>
|
13 |
+
<!-- [![Contributors][contributors-shield]][contributors-url]
|
14 |
+
[![Forks][forks-shield]][forks-url]
|
15 |
+
[![Stargazers][stars-shield]][stars-url]
|
16 |
+
[![Issues][issues-shield]][issues-url] -->
|
17 |
+
|
18 |
+
</div>
|
19 |
+
|
20 |
+
> [**HybridNets: End-to-End Perception Network**](https://arxiv.org/abs/2203.09035)
|
21 |
+
>
|
22 |
+
> by Dat Vu, Bao Ngo, [Hung Phan](https://scholar.google.com/citations?user=V3paQH8AAAAJ&hl=vi&oi=ao)<sup> :email:</sup> [*FPT University*](https://uni.fpt.edu.vn/en-US/Default.aspx)
|
23 |
+
>
|
24 |
+
> (<sup>:email:</sup>) corresponding author.
|
25 |
+
>
|
26 |
+
> *arXiv technical report ([arXiv 2203.09035](https://arxiv.org/abs/2203.09035))*
|
27 |
+
|
28 |
+
[](https://paperswithcode.com/sota/traffic-object-detection-on-bdd100k?p=hybridnets-end-to-end-perception-network-1)
|
29 |
+
[](https://paperswithcode.com/sota/lane-detection-on-bdd100k?p=hybridnets-end-to-end-perception-network-1)
|
30 |
+
|
31 |
+
<!-- TABLE OF CONTENTS -->
|
32 |
+
<details>
|
33 |
+
<summary>Table of Contents</summary>
|
34 |
+
<ol>
|
35 |
+
<li>
|
36 |
+
<a href="#about-the-project">About The Project</a>
|
37 |
+
<ul>
|
38 |
+
<li><a href="#project-structure">Project Structure</a></li>
|
39 |
+
</ul>
|
40 |
+
</li>
|
41 |
+
<li>
|
42 |
+
<a href="#getting-started">Getting Started</a>
|
43 |
+
<ul>
|
44 |
+
<li><a href="#installation">Installation</a></li>
|
45 |
+
<li><a href="#demo">Demo</a></li>
|
46 |
+
</ul>
|
47 |
+
</li>
|
48 |
+
<li>
|
49 |
+
<a href="#usage">Usage</a>
|
50 |
+
<ul>
|
51 |
+
<li><a href="#data-preparation">Data Preparation</a></li>
|
52 |
+
<li><a href="#training">Training</a></li>
|
53 |
+
</ul>
|
54 |
+
</li>
|
55 |
+
<li><a href="#training-tips">Training Tips</a></li>
|
56 |
+
<li><a href="#results">Results</a></li>
|
57 |
+
<li><a href="#license">License</a></li>
|
58 |
+
<li><a href="#acknowledgements">Acknowledgements</a></li>
|
59 |
+
<li><a href="#citation">Citation</a></li>
|
60 |
+
</ol>
|
61 |
+
</details>
|
62 |
+
|
63 |
+
|
64 |
+
## About The Project
|
65 |
+
<!-- #### <div align=center> **HybridNets** = **real-time** :stopwatch: * **state-of-the-art** :1st_place_medal: * (traffic object detection + drivable area segmentation + lane line detection) :motorway: </div> -->
|
66 |
+
HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset.
|
67 |
+

|
68 |
+
|
69 |
+
### Project Structure
|
70 |
+
```bash
|
71 |
+
HybridNets
|
72 |
+
│ backbone.py # Model configuration
|
73 |
+
│ hubconf.py # Pytorch Hub entrypoint
|
74 |
+
│ hybridnets_test.py # Image inference
|
75 |
+
│ hybridnets_test_videos.py # Video inference
|
76 |
+
│ train.py # Train script
|
77 |
+
│ val.py # Validate script
|
78 |
+
│
|
79 |
+
├───encoders # https://github.com/qubvel/segmentation_models.pytorch/tree/master/segmentation_models_pytorch/encoders
|
80 |
+
│ ...
|
81 |
+
│
|
82 |
+
├───hybridnets
|
83 |
+
│ autoanchor.py # Generate new anchors by k-means
|
84 |
+
│ dataset.py # BDD100K dataset
|
85 |
+
│ loss.py # Focal, tversky (dice)
|
86 |
+
│ model.py # Model blocks
|
87 |
+
│
|
88 |
+
├───projects
|
89 |
+
│ bdd100k.yml # Project configuration
|
90 |
+
│
|
91 |
+
└───utils
|
92 |
+
│ plot.py # Draw bounding box
|
93 |
+
│ smp_metrics.py # https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/metrics/functional.py
|
94 |
+
│ utils.py # Various helper functions (preprocess, postprocess, eval...)
|
95 |
+
│
|
96 |
+
└───sync_batchnorm # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch/tree/master/sync_batchnorm
|
97 |
+
...
|
98 |
+
```
|
99 |
+
|
100 |
+
## Getting Started [](https://colab.research.google.com/drive/1Uc1ZPoPeh-lAhPQ1CloiVUsOIRAVOGWA?usp=sharing)
|
101 |
+
### Installation
|
102 |
+
The project was developed with [**Python>=3.7**](https://www.python.org/downloads/) and [**Pytorch>=1.10**](https://pytorch.org/get-started/locally/).
|
103 |
+
```bash
|
104 |
+
git clone https://github.com/datvuthanh/HybridNets
|
105 |
+
cd HybridNets
|
106 |
+
pip install -r requirements.txt
|
107 |
+
```
|
108 |
+
|
109 |
+
### Demo
|
110 |
+
```bash
|
111 |
+
# Download end-to-end weights
|
112 |
+
mkdir weights
|
113 |
+
curl -L -o weights/hybridnets.pth https://github.com/datvuthanh/HybridNets/releases/download/v1.0/hybridnets.pth
|
114 |
+
|
115 |
+
# Image inference
|
116 |
+
python hybridnets_test.py -w weights/hybridnets.pth --source demo/image --output demo_result --imshow False --imwrite True
|
117 |
+
|
118 |
+
# Video inference
|
119 |
+
python hybridnets_test_videos.py -w weights/hybridnets.pth --source demo/video --output demo_result
|
120 |
+
|
121 |
+
# Result is saved in a new folder called demo_result
|
122 |
+
```
|
123 |
+
|
124 |
+
## Usage
|
125 |
+
### Data Preparation
|
126 |
+
Recommended dataset structure:
|
127 |
+
```bash
|
128 |
+
HybridNets
|
129 |
+
└───datasets
|
130 |
+
├───imgs
|
131 |
+
│ ├───train
|
132 |
+
│ └───val
|
133 |
+
├───det_annot
|
134 |
+
│ ├───train
|
135 |
+
│ └───val
|
136 |
+
├───da_seg_annot
|
137 |
+
│ ├───train
|
138 |
+
│ └───val
|
139 |
+
└───ll_seg_annot
|
140 |
+
├───train
|
141 |
+
└───val
|
142 |
+
```
|
143 |
+
Update your dataset paths in `projects/your_project_name.yml`.
|
144 |
+
|
145 |
+
For BDD100K: [imgs](https://bdd-data.berkeley.edu/), [det_annot](https://drive.google.com/file/d/19CEnZzgLXNNYh1wCvUlNi8UfiBkxVRH0/view), [da_seg_annot](https://drive.google.com/file/d/1NZM-xqJJYZ3bADgLCdrFOa5Vlen3JlkZ/view), [ll_seg_annot](https://drive.google.com/file/d/1o-XpIvHJq0TVUrwlwiMGzwP1CtFsfQ6t/view)
|
146 |
+
|
147 |
+
### Training
|
148 |
+
#### 1) Edit or create a new project configuration, using bdd100k.yml as a template
|
149 |
+
```python
|
150 |
+
# mean and std of dataset in RGB order
|
151 |
+
mean: [0.485, 0.456, 0.406]
|
152 |
+
std: [0.229, 0.224, 0.225]
|
153 |
+
|
154 |
+
# bdd100k anchors
|
155 |
+
anchors_scales: '[2**0, 2**0.70, 2**1.32]'
|
156 |
+
anchors_ratios: '[(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)]'
|
157 |
+
|
158 |
+
# must match your dataset's category_id.
|
159 |
+
# category_id is one_indexed,
|
160 |
+
# for example, index of 'car' here is 0, while category_id is 1
|
161 |
+
obj_list: ['car']
|
162 |
+
|
163 |
+
seg_list: ['road',
|
164 |
+
'lane']
|
165 |
+
|
166 |
+
dataset:
|
167 |
+
color_rgb: false
|
168 |
+
dataroot: path/to/imgs
|
169 |
+
labelroot: path/to/det_annot
|
170 |
+
laneroot: path/to/ll_seg_annot
|
171 |
+
maskroot: path/to/da_seg_annot
|
172 |
+
...
|
173 |
+
```
|
174 |
+
|
175 |
+
#### 2) Train
|
176 |
+
```bash
|
177 |
+
python train.py -p bdd100k # your_project_name
|
178 |
+
-c 3 # coefficient of effnet backbone, result from paper is 3
|
179 |
+
-n 4 # num_workers
|
180 |
+
-b 8 # batch_size per gpu
|
181 |
+
-w path/to/weight # use 'last' to resume training from previous session
|
182 |
+
--freeze_det # freeze detection head, others: --freeze_backbone, --freeze_seg
|
183 |
+
--lr 1e-5 # learning rate
|
184 |
+
--optim adamw # adamw | sgd
|
185 |
+
--num_epochs 200
|
186 |
+
```
|
187 |
+
Please check `python train.py --help` for every available arguments.
|
188 |
+
|
189 |
+
#### 3) Evaluate
|
190 |
+
```bash
|
191 |
+
python val.py -p bdd100k -c 3 -w checkpoints/weight.pth
|
192 |
+
```
|
193 |
+
|
194 |
+
## Training Tips
|
195 |
+
### Anchors :anchor:
|
196 |
+
If your dataset is intrinsically different from COCO or BDD100K, or the metrics of detection after training are not as high as expected, you could try enabling autoanchor in `project.yml`:
|
197 |
+
```python
|
198 |
+
...
|
199 |
+
model:
|
200 |
+
image_size:
|
201 |
+
- 640
|
202 |
+
- 384
|
203 |
+
need_autoanchor: true # set to true to run autoanchor
|
204 |
+
pin_memory: false
|
205 |
+
...
|
206 |
+
```
|
207 |
+
This automatically finds the best combination of anchor scales and anchor ratios for your dataset. Then you can manually edit them `project.yml` and disable autoanchor.
|
208 |
+
|
209 |
+
If you're feeling lucky, maybe mess around with base_anchor_scale in `backbone.py`:
|
210 |
+
```python
|
211 |
+
class HybridNetsBackbone(nn.Module):
|
212 |
+
...
|
213 |
+
self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6]
|
214 |
+
self.anchor_scale = [1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,]
|
215 |
+
self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
|
216 |
+
...
|
217 |
+
```
|
218 |
+
and `model.py`:
|
219 |
+
```python
|
220 |
+
class Anchors(nn.Module):
|
221 |
+
...
|
222 |
+
for scale, ratio in itertools.product(self.scales, self.ratios):
|
223 |
+
base_anchor_size = self.anchor_scale * stride * scale
|
224 |
+
anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0
|
225 |
+
anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0
|
226 |
+
...
|
227 |
+
```
|
228 |
+
to get a grasp on how anchor boxes work.
|
229 |
+
|
230 |
+
And because a picture is worth a thousand words, you can visualize your anchor boxes in [Anchor Computation Tool](https://github.com/Cli98/anchor_computation_tool).
|
231 |
+
### Training stages
|
232 |
+
We experimented with training stages and found that this settings achieved the best results:
|
233 |
+
|
234 |
+
1. `--freeze_seg True` ~ 100 epochs
|
235 |
+
2. `--freeze_backbone True --freeze_det True` ~ 50 epochs
|
236 |
+
3. Train end-to-end ~ 50 epochs
|
237 |
+
|
238 |
+
The reason being detection head is harder to converge early on, so we basically skipped segmentation head to focus on detection first.
|
239 |
+
|
240 |
+
## Results
|
241 |
+
### Traffic Object Detection
|
242 |
+
|
243 |
+
<table>
|
244 |
+
<tr><th>Result </th><th>Visualization</th></tr>
|
245 |
+
<tr><td>
|
246 |
+
|
247 |
+
| Model | Recall (%) | mAP@0.5 (%) |
|
248 |
+
|:------------------:|:------------:|:---------------:|
|
249 |
+
| `MultiNet` | 81.3 | 60.2 |
|
250 |
+
| `DLT-Net` | 89.4 | 68.4 |
|
251 |
+
| `Faster R-CNN` | 77.2 | 55.6 |
|
252 |
+
| `YOLOv5s` | 86.8 | 77.2 |
|
253 |
+
| `YOLOP` | 89.2 | 76.5 |
|
254 |
+
| **`HybridNets`** | **92.8** | **77.3** |
|
255 |
+
|
256 |
+
</td><td>
|
257 |
+
|
258 |
+
<img src="images/det1.jpg" width="50%" /><img src="images/det2.jpg" width="50%" />
|
259 |
+
|
260 |
+
</td></tr> </table>
|
261 |
+
|
262 |
+
<!--
|
263 |
+
| Model | Recall (%) | mAP@0.5 (%) |
|
264 |
+
|:------------------:|:------------:|:---------------:|
|
265 |
+
| `MultiNet` | 81.3 | 60.2 |
|
266 |
+
| `DLT-Net` | 89.4 | 68.4 |
|
267 |
+
| `Faster R-CNN` | 77.2 | 55.6 |
|
268 |
+
| `YOLOv5s` | 86.8 | 77.2 |
|
269 |
+
| `YOLOP` | 89.2 | 76.5 |
|
270 |
+
| **`HybridNets`** | **92.8** | **77.3** |
|
271 |
+
|
272 |
+
<p align="middle">
|
273 |
+
<img src="images/det1.jpg" width="49%" />
|
274 |
+
<img src="images/det2.jpg" width="49%" />
|
275 |
+
</p>
|
276 |
+
|
277 |
+
-->
|
278 |
+
|
279 |
+
### Drivable Area Segmentation
|
280 |
+
|
281 |
+
<table>
|
282 |
+
<tr><th>Result </th><th>Visualization</th></tr>
|
283 |
+
<tr><td>
|
284 |
+
|
285 |
+
| Model | Drivable mIoU (%) |
|
286 |
+
|:----------------:|:-----------------:|
|
287 |
+
| `MultiNet` | 71.6 |
|
288 |
+
| `DLT-Net` | 71.3 |
|
289 |
+
| `PSPNet` | 89.6 |
|
290 |
+
| `YOLOP` | 91.5 |
|
291 |
+
| **`HybridNets`** | **90.5** |
|
292 |
+
|
293 |
+
</td><td>
|
294 |
+
|
295 |
+
<img src="images/road1.jpg" width="50%" /><img src="images/road2.jpg" width="50%" />
|
296 |
+
|
297 |
+
</td></tr> </table>
|
298 |
+
|
299 |
+
<!--
|
300 |
+
| Model | Drivable mIoU (%) |
|
301 |
+
|:----------------:|:-----------------:|
|
302 |
+
| `MultiNet` | 71.6 |
|
303 |
+
| `DLT-Net` | 71.3 |
|
304 |
+
| `PSPNet` | 89.6 |
|
305 |
+
| `YOLOP` | 91.5 |
|
306 |
+
| **`HybridNets`** | **90.5** |
|
307 |
+
<p align="middle">
|
308 |
+
<img src="images/road1.jpg" width="49%" />
|
309 |
+
<img src="images/road2.jpg" width="49%" />
|
310 |
+
</p>
|
311 |
+
-->
|
312 |
+
|
313 |
+
### Lane Line Detection
|
314 |
+
|
315 |
+
<table>
|
316 |
+
<tr><th>Result </th><th>Visualization</th></tr>
|
317 |
+
<tr><td>
|
318 |
+
|
319 |
+
| Model | Accuracy (%) | Lane Line IoU (%) |
|
320 |
+
|:----------------:|:------------:|:-----------------:|
|
321 |
+
| `Enet` | 34.12 | 14.64 |
|
322 |
+
| `SCNN` | 35.79 | 15.84 |
|
323 |
+
| `Enet-SAD` | 36.56 | 16.02 |
|
324 |
+
| `YOLOP` | 70.5 | 26.2 |
|
325 |
+
| **`HybridNets`** | **85.4** | **31.6** |
|
326 |
+
|
327 |
+
</td><td>
|
328 |
+
|
329 |
+
<img src="images/lane1.jpg" width="50%" /><img src="images/lane2.jpg" width="50%" />
|
330 |
+
|
331 |
+
</td></tr> </table>
|
332 |
+
|
333 |
+
<!--
|
334 |
+
| Model | Accuracy (%) | Lane Line IoU (%) |
|
335 |
+
|:----------------:|:------------:|:-----------------:|
|
336 |
+
| `Enet` | 34.12 | 14.64 |
|
337 |
+
| `SCNN` | 35.79 | 15.84 |
|
338 |
+
| `Enet-SAD` | 36.56 | 16.02 |
|
339 |
+
| `YOLOP` | 70.5 | 26.2 |
|
340 |
+
| **`HybridNets`** | **85.4** | **31.6** |
|
341 |
+
|
342 |
+
<p align="middle">
|
343 |
+
<img src="images/lane1.jpg" width="49%" />
|
344 |
+
<img src="images/lane2.jpg" width="49%" />
|
345 |
+
</p>
|
346 |
+
-->
|
347 |
+
<div align="center">
|
348 |
+
|
349 |
+

|
350 |
+
|
351 |
+
[Original footage](https://www.youtube.com/watch?v=lx4yA1LEi9c) courtesy of [Hanoi Life](https://www.youtube.com/channel/UChT1Cpf_URepCpsdIqjsDHQ)
|
352 |
+
|
353 |
+
</div>
|
354 |
+
|
355 |
+
## License
|
356 |
+
|
357 |
+
Distributed under the MIT License. See `LICENSE` for more information.
|
358 |
+
|
359 |
+
## Acknowledgements
|
360 |
+
|
361 |
+
Our work would not be complete without the wonderful work of the following authors:
|
362 |
+
|
363 |
+
* [EfficientDet](https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch)
|
364 |
+
* [YOLOv5](https://github.com/ultralytics/yolov5)
|
365 |
+
* [YOLOP](https://github.com/hustvl/YOLOP)
|
366 |
+
* [KMeans Anchors Ratios](https://github.com/mnslarcher/kmeans-anchors-ratios)
|
367 |
+
* [Anchor Computation Tool](https://github.com/Cli98/anchor_computation_tool)
|
368 |
+
|
369 |
+
## Citation
|
370 |
+
|
371 |
+
If you find our paper and code useful for your research, please consider giving a star :star: and citation :pencil: :
|
372 |
+
|
373 |
+
```BibTeX
|
374 |
+
@misc{vu2022hybridnets,
|
375 |
+
title={HybridNets: End-to-End Perception Network},
|
376 |
+
author={Dat Vu and Bao Ngo and Hung Phan},
|
377 |
+
year={2022},
|
378 |
+
eprint={2203.09035},
|
379 |
+
archivePrefix={arXiv},
|
380 |
+
primaryClass={cs.CV}
|
381 |
+
}
|
382 |
+
```
|
383 |
+
|
384 |
+
<!-- MARKDOWN LINKS & IMAGES -->
|
385 |
+
<!-- https://www.markdownguide.org/basic-syntax/#reference-style-links -->
|
386 |
+
[contributors-shield]: https://img.shields.io/github/contributors/othneildrew/Best-README-Template.svg?style=for-the-badge
|
387 |
+
[contributors-url]: https://github.com/datvuthanh/HybridNets/graphs/contributors
|
388 |
+
[forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge
|
389 |
+
[forks-url]: https://github.com/datvuthanh/HybridNets/network/members
|
390 |
+
[stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge
|
391 |
+
[stars-url]: https://github.com/datvuthanh/HybridNets/stargazers
|
392 |
+
[issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge
|
393 |
+
[issues-url]: https://github.com/datvuthanh/HybridNets/issues
|