Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload encoders/timm_resnest.py
Browse files- encoders/timm_resnest.py +208 -0
    	
        encoders/timm_resnest.py
    ADDED
    
    | @@ -0,0 +1,208 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from ._base import EncoderMixin
         | 
| 2 | 
            +
            from timm.models.resnet import ResNet
         | 
| 3 | 
            +
            from timm.models.resnest import ResNestBottleneck
         | 
| 4 | 
            +
            import torch.nn as nn
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class ResNestEncoder(ResNet, EncoderMixin):
         | 
| 8 | 
            +
                def __init__(self, out_channels, depth=5, **kwargs):
         | 
| 9 | 
            +
                    super().__init__(**kwargs)
         | 
| 10 | 
            +
                    self._depth = depth
         | 
| 11 | 
            +
                    self._out_channels = out_channels
         | 
| 12 | 
            +
                    self._in_channels = 3
         | 
| 13 | 
            +
             | 
| 14 | 
            +
                    del self.fc
         | 
| 15 | 
            +
                    del self.global_pool
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def get_stages(self):
         | 
| 18 | 
            +
                    return [
         | 
| 19 | 
            +
                        nn.Identity(),
         | 
| 20 | 
            +
                        nn.Sequential(self.conv1, self.bn1, self.act1),
         | 
| 21 | 
            +
                        nn.Sequential(self.maxpool, self.layer1),
         | 
| 22 | 
            +
                        self.layer2,
         | 
| 23 | 
            +
                        self.layer3,
         | 
| 24 | 
            +
                        self.layer4,
         | 
| 25 | 
            +
                    ]
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def make_dilated(self, stage_list, dilation_list):
         | 
| 28 | 
            +
                    raise ValueError("ResNest encoders do not support dilated mode")
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def forward(self, x):
         | 
| 31 | 
            +
                    stages = self.get_stages()
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                    features = []
         | 
| 34 | 
            +
                    for i in range(self._depth + 1):
         | 
| 35 | 
            +
                        x = stages[i](x)
         | 
| 36 | 
            +
                        features.append(x)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    return features
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def load_state_dict(self, state_dict, **kwargs):
         | 
| 41 | 
            +
                    state_dict.pop("fc.bias", None)
         | 
| 42 | 
            +
                    state_dict.pop("fc.weight", None)
         | 
| 43 | 
            +
                    super().load_state_dict(state_dict, **kwargs)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            resnest_weights = {
         | 
| 47 | 
            +
                'timm-resnest14d': {
         | 
| 48 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth'
         | 
| 49 | 
            +
                },
         | 
| 50 | 
            +
                'timm-resnest26d': {
         | 
| 51 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth'
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                'timm-resnest50d': {
         | 
| 54 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth',
         | 
| 55 | 
            +
                },
         | 
| 56 | 
            +
                'timm-resnest101e': {
         | 
| 57 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth',
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                'timm-resnest200e': {
         | 
| 60 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth',
         | 
| 61 | 
            +
                },
         | 
| 62 | 
            +
                'timm-resnest269e': {
         | 
| 63 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth',
         | 
| 64 | 
            +
                },
         | 
| 65 | 
            +
                'timm-resnest50d_4s2x40d': {
         | 
| 66 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth',
         | 
| 67 | 
            +
                },
         | 
| 68 | 
            +
                'timm-resnest50d_1s4x24d': {
         | 
| 69 | 
            +
                    'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth',
         | 
| 70 | 
            +
                }
         | 
| 71 | 
            +
            }
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            pretrained_settings = {}
         | 
| 74 | 
            +
            for model_name, sources in resnest_weights.items():
         | 
| 75 | 
            +
                pretrained_settings[model_name] = {}
         | 
| 76 | 
            +
                for source_name, source_url in sources.items():
         | 
| 77 | 
            +
                    pretrained_settings[model_name][source_name] = {
         | 
| 78 | 
            +
                        "url": source_url,
         | 
| 79 | 
            +
                        'input_size': [3, 224, 224],
         | 
| 80 | 
            +
                        'input_range': [0, 1],
         | 
| 81 | 
            +
                        'mean': [0.485, 0.456, 0.406],
         | 
| 82 | 
            +
                        'std': [0.229, 0.224, 0.225],
         | 
| 83 | 
            +
                        'num_classes': 1000
         | 
| 84 | 
            +
                    }
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            timm_resnest_encoders = {
         | 
| 88 | 
            +
                'timm-resnest14d': {
         | 
| 89 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 90 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest14d"],
         | 
| 91 | 
            +
                    'params': {
         | 
| 92 | 
            +
                        'out_channels': (3, 64, 256, 512, 1024, 2048),
         | 
| 93 | 
            +
                        'block': ResNestBottleneck,
         | 
| 94 | 
            +
                        'layers': [1, 1, 1, 1],
         | 
| 95 | 
            +
                        'stem_type': 'deep',
         | 
| 96 | 
            +
                        'stem_width': 32,
         | 
| 97 | 
            +
                        'avg_down': True,
         | 
| 98 | 
            +
                        'base_width': 64,
         | 
| 99 | 
            +
                        'cardinality': 1,
         | 
| 100 | 
            +
                        'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
         | 
| 101 | 
            +
                    }
         | 
| 102 | 
            +
                },
         | 
| 103 | 
            +
                'timm-resnest26d': {
         | 
| 104 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 105 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest26d"],
         | 
| 106 | 
            +
                    'params': {
         | 
| 107 | 
            +
                        'out_channels': (3, 64, 256, 512, 1024, 2048),
         | 
| 108 | 
            +
                        'block': ResNestBottleneck,
         | 
| 109 | 
            +
                        'layers': [2, 2, 2, 2],
         | 
| 110 | 
            +
                        'stem_type': 'deep',
         | 
| 111 | 
            +
                        'stem_width': 32,
         | 
| 112 | 
            +
                        'avg_down': True,
         | 
| 113 | 
            +
                        'base_width': 64,
         | 
| 114 | 
            +
                        'cardinality': 1,
         | 
| 115 | 
            +
                        'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
         | 
| 116 | 
            +
                    }
         | 
| 117 | 
            +
                },
         | 
| 118 | 
            +
                'timm-resnest50d': {
         | 
| 119 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 120 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest50d"],
         | 
| 121 | 
            +
                    'params': {
         | 
| 122 | 
            +
                        'out_channels': (3, 64, 256, 512, 1024, 2048),
         | 
| 123 | 
            +
                        'block': ResNestBottleneck,
         | 
| 124 | 
            +
                        'layers': [3, 4, 6, 3],
         | 
| 125 | 
            +
                        'stem_type': 'deep',
         | 
| 126 | 
            +
                        'stem_width': 32,
         | 
| 127 | 
            +
                        'avg_down': True,
         | 
| 128 | 
            +
                        'base_width': 64,
         | 
| 129 | 
            +
                        'cardinality': 1,
         | 
| 130 | 
            +
                        'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
         | 
| 131 | 
            +
                    }
         | 
| 132 | 
            +
                },
         | 
| 133 | 
            +
                'timm-resnest101e': {
         | 
| 134 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 135 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest101e"],
         | 
| 136 | 
            +
                    'params': {
         | 
| 137 | 
            +
                        'out_channels': (3, 128, 256, 512, 1024, 2048),
         | 
| 138 | 
            +
                        'block': ResNestBottleneck,
         | 
| 139 | 
            +
                        'layers': [3, 4, 23, 3],
         | 
| 140 | 
            +
                        'stem_type': 'deep',
         | 
| 141 | 
            +
                        'stem_width': 64,
         | 
| 142 | 
            +
                        'avg_down': True,
         | 
| 143 | 
            +
                        'base_width': 64,
         | 
| 144 | 
            +
                        'cardinality': 1,
         | 
| 145 | 
            +
                        'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
         | 
| 146 | 
            +
                    }
         | 
| 147 | 
            +
                },
         | 
| 148 | 
            +
                'timm-resnest200e': {
         | 
| 149 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 150 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest200e"],
         | 
| 151 | 
            +
                    'params': {
         | 
| 152 | 
            +
                        'out_channels': (3, 128, 256, 512, 1024, 2048),
         | 
| 153 | 
            +
                        'block': ResNestBottleneck,
         | 
| 154 | 
            +
                        'layers': [3, 24, 36, 3],
         | 
| 155 | 
            +
                        'stem_type': 'deep',
         | 
| 156 | 
            +
                        'stem_width': 64,
         | 
| 157 | 
            +
                        'avg_down': True,
         | 
| 158 | 
            +
                        'base_width': 64,
         | 
| 159 | 
            +
                        'cardinality': 1,
         | 
| 160 | 
            +
                        'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
         | 
| 161 | 
            +
                    }
         | 
| 162 | 
            +
                },
         | 
| 163 | 
            +
                'timm-resnest269e': {
         | 
| 164 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 165 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest269e"],
         | 
| 166 | 
            +
                    'params': {
         | 
| 167 | 
            +
                        'out_channels': (3, 128, 256, 512, 1024, 2048),
         | 
| 168 | 
            +
                        'block': ResNestBottleneck,
         | 
| 169 | 
            +
                        'layers': [3, 30, 48, 8],
         | 
| 170 | 
            +
                        'stem_type': 'deep',
         | 
| 171 | 
            +
                        'stem_width': 64,
         | 
| 172 | 
            +
                        'avg_down': True,
         | 
| 173 | 
            +
                        'base_width': 64,
         | 
| 174 | 
            +
                        'cardinality': 1,
         | 
| 175 | 
            +
                        'block_args': {'radix': 2, 'avd': True, 'avd_first': False}
         | 
| 176 | 
            +
                    },
         | 
| 177 | 
            +
                },
         | 
| 178 | 
            +
                'timm-resnest50d_4s2x40d': {
         | 
| 179 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 180 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"],
         | 
| 181 | 
            +
                    'params': {
         | 
| 182 | 
            +
                        'out_channels': (3, 64, 256, 512, 1024, 2048),
         | 
| 183 | 
            +
                        'block': ResNestBottleneck,
         | 
| 184 | 
            +
                        'layers': [3, 4, 6, 3],
         | 
| 185 | 
            +
                        'stem_type': 'deep',
         | 
| 186 | 
            +
                        'stem_width': 32,
         | 
| 187 | 
            +
                        'avg_down': True,
         | 
| 188 | 
            +
                        'base_width': 40,
         | 
| 189 | 
            +
                        'cardinality': 2,
         | 
| 190 | 
            +
                        'block_args': {'radix': 4, 'avd': True, 'avd_first': True}
         | 
| 191 | 
            +
                    }
         | 
| 192 | 
            +
                },
         | 
| 193 | 
            +
                'timm-resnest50d_1s4x24d': {
         | 
| 194 | 
            +
                    'encoder': ResNestEncoder,
         | 
| 195 | 
            +
                    "pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"],
         | 
| 196 | 
            +
                    'params': {
         | 
| 197 | 
            +
                        'out_channels': (3, 64, 256, 512, 1024, 2048),
         | 
| 198 | 
            +
                        'block': ResNestBottleneck,
         | 
| 199 | 
            +
                        'layers': [3, 4, 6, 3],
         | 
| 200 | 
            +
                        'stem_type': 'deep',
         | 
| 201 | 
            +
                        'stem_width': 32,
         | 
| 202 | 
            +
                        'avg_down': True,
         | 
| 203 | 
            +
                        'base_width': 24,
         | 
| 204 | 
            +
                        'cardinality': 4,
         | 
| 205 | 
            +
                        'block_args': {'radix': 1, 'avd': True, 'avd_first': True}
         | 
| 206 | 
            +
                    }
         | 
| 207 | 
            +
                }
         | 
| 208 | 
            +
            }
         |